中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數y=f(x)的圖象和y=sin(x+
π
4
)的圖象關于點P(
π
4
,0)
對稱,現將f(x)的圖象向左平移
π
4
個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數y=g(x)的圖象,則y=g(x)的表達式為(  )
A.y=-sin
1
4
x
B.y=-cos
1
4
x
C.y=-sin(4x-
π
4
)
D.y=-cos(4x-
π
4
)
若函數y=f(x)的圖象和y=sin(x+
π
4
)的圖象關于點P(
π
4
,0)對稱,
則f(x)=0-sin(
π
2
-x+
π
4
)=-cos(x-
π
4

將f(x)的圖象向左平移
π
4
個單位后,得到函數-cosx的圖象,
再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數y=g(x)=-cos
1
4
x
的圖象,
所以y=g(x)的表達式為:y=-cos
1
4
x

故選B
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數y=f(x+
1
2
)
為奇函數,設g(x)=f(x)+1,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=(  )
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)=
lnx
x

(1)求函數y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的最大值;
(3)比較20092010與20102009的大小,并說明為什么?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)=
lnx
x

(1)求函數y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=
f(x)
ex
(x∈R)
滿足f′(x)>f(x),則f(1)與ef(0)的大小關系為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

給出如下命題:
命題p:已知函數y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數y=f(x)在x=a時的函數值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實數a的取值范圍,使命題p,q中有且只有一個為真命題.

查看答案和解析>>

同步練習冊答案