已知橢圓
的離心率為
,左右焦點分別為
,且
.
(1)求橢圓C的方程;
(2)過點
的直線與橢圓
相交于
兩點,且
,求
的面積.
(1)
;(2)![]()
解析試題分析:(1)因為要求橢圓的方程,必須求出兩個關于橢圓的三個基本量
的等式,依題意可得,離心率,焦距的長即可求出相應的
的大小,從而可求出橢圓的方程.
(2)要求三角形的面積通過求出弦長和焦點到直線的距離,從而根據三角形的面積可得三角形的面積.弦長公式的計算需要具備解方程的能力,應用韋達定理,弦長公式,化簡等式的能力;運用點到直線的距離公式計算三角形的高.
試題解析:(1)由已知
,所以
.
因為橢圓
的離心率為
,所以
.
所以
. 所以
,
故橢圓C的方程為
.
(2)若直線
的方程為
,則
,不符合題意.
設直線
的方程為
,
由
消去y得
,
顯然
成立,設
,
則
![]()
.
由已知
,解得
.當
,直線
的方程為
,即
,
點
到直線
的距離
.所以
的面
積![]()
.
當
,
的面積也等于
.
綜上,
的面積等于
.
考點:1.直線與圓的位置關系.2.待定系數求橢圓的方程.3.解方程的能力.4.三角形的面積公式.
科目:高中數學 來源: 題型:解答題
已知橢圓的中心為坐標原點,短軸長為2,一條準線方程為l:x=2.
(1)求橢圓的標準方程;
(2)設O為坐標原點,F是橢圓的右焦點,點M是直線l上的動點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線
的一條漸近線方程是
,它的一個焦點在拋物線
的準線上,點
是雙曲線
右支上相異兩點,且滿足![]()
為線段
的中點,直線
的斜率為![]()
(1)求雙曲線
的方程;
(2)用
表示點
的坐標;
(3)若
,
的中垂線交
軸于點
,直線
交
軸于點
,求
的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,動點
滿足:點
到定點
與到
軸的距離之差為
.記動點
的軌跡為曲線
.
(1)求曲線
的軌跡方程;
(2)過點
的直線交曲線
于
、
兩點,過點
和原點
的直線交直線
于點
,求證:直線
平行于
軸.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動點P到點A(-2,0)與點B(2,0)的斜率之積為-
,點P的軌跡為曲線C.![]()
(1)求曲線C的方程;
(2)若點Q為曲線C上的一點,直線AQ,BQ與直線x=4分別交于M,N兩點,直線BM與橢圓的交點為D.求證,A,D,N三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的左、右焦點分別為
,離心率為
,P是橢圓上一點,且
面積的最大值等于2.
(1)求橢圓的方程;
(2)過點M(0,2)作直線
與直線
垂直,試判斷直線
與橢圓的位置關系5
(3)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
是拋物線
上的兩個點,點
的坐標為
,直線
的斜率為
.設拋物線
的焦點在直線
的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設C為W上一點,且
,過
兩點分別作W的切線,記兩切線的交點為
. 判斷四邊形
是否為梯形,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com