(本小題滿分12分)已知
其中
是自然對(duì)數(shù)的底 .
(1)若
在
處取得極值,求
的值;
(2)求
的單調(diào)區(qū)間;
(3)設(shè)
,存在
,使得
成立,求
的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)![]()
(1)判斷
的單調(diào)性并證明;
(2)若
滿足
,試確定
的取值范圍。
(3)若函數(shù)
對(duì)任意
時(shí),
恒成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A、B、C是直線l上的三點(diǎn),向量
、
、
滿足
,(O不在直線l上
)
(1)求
的表達(dá)式;
(2)若函數(shù)
在
上為增函數(shù),求a的范圍;
(3)當(dāng)
時(shí),求證:
對(duì)
的正整數(shù)n成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)函數(shù)
。
(1)若
在
處取得極值,求
的值;
(2)若
在定義域內(nèi)為增函數(shù),求
的取值范圍;
(3)設(shè)
,當(dāng)
時(shí),
求證:①
在其定義域內(nèi)恒成立;
求證:②
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題分12分)
定義
.
(Ⅰ)求曲線
與直線
垂直的切線方程;
(Ⅱ)若存在實(shí)數(shù)
使曲線
在
點(diǎn)處的切線斜率為
,且
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
.(
).
(1)當(dāng)
時(shí),求函數(shù)
的極值;
(2)若對(duì)
,有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
已知
函數(shù)![]()
(1)判斷函數(shù)
在
上的單調(diào)性;
(2)是否存在實(shí)數(shù)
,使曲線
在點(diǎn)
處的切線與
軸垂直?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)設(shè)
.如果對(duì)任意
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知
的圖像在點(diǎn)
處的切線與直線
平行.
(1)求a,b滿足的關(guān)系式;
(2)若
上恒成立,求a的取值范圍;
(3)證明:
(
)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com