設f(x)是定義在R上的奇函數,且對任意實數x恒滿足f(x+2)=-f(x),當x∈[0,2]時,f(x)=2x-x2.
(1)求證:f(x)是周期函數.
(2)當x∈[2,4]時,求f(x)的解析式.
(3)計算f(0)+f(1)+f(2)+…+f(2011)
(1)∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
∴f(x)是周期為4的周期函數.
(2)當x∈[-2,0]時,-x∈[0,2],由已知
f(-x)=2(-x)-(-x)2=-2x-x2,
又f(x)為奇函數,∴-f(x)=-2x-x2.
∴f(x)=x2+2x.當x∈[2,4]時,x-4∈[-2,0].
∴f(x-4)=(x-4)2+2(x-4),
又f(x)是周期為4的周期函數,
∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8,
∴x∈[2,4]時,f(x)=x2-6x+8.
(3)∵f(0)=0,f(1)=1,f(2)=0,f(3)=-1.
又f(x)是周期為4的周期函數.
∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)
=…=f(2004)+f(2005)+f(2006)+f(2007)
=f(2010)+f(2009)+f(2010)+f(2011)=0.
∴f(0)+f(1)+…+f(2011)=0+…+0=0.
解析
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com