已知函數f(x)=2x-
-aln(x+1),a∈R.
(1)若a=-4,求函數f(x)的單調區間;
(2)求y=f(x)的極值點(即函數取到極值時點的橫坐標).
(1)f(x)的單調增區間為(-1,3), 單調減區間為(3,+∞)。
(2)
ⅰ.
7分
ⅱ.當
時,若
,由函數的單調性可知f(x)有極小值點
;有極大值點
。若
時, f(x)有極大值點
,無極小值點。
【解析】
試題分析:(1)因為,f(x)=2x-
-aln(x+1),a∈R,定義域為(-1,+∞)。
所以,
,
故,f(x)的單調增區間為(-1,3), 單調減區間為(3,+∞)。
(2)因為,f(x)=2x-
-aln(x+1),a∈R,定義域為(-1,+∞)。
所以,
,
=0有實根的條件是
。
ⅰ.
ⅱ.當
時,若
f(x)有極小值點
;有極大值點
。若
時, f(x)有極大值點
,無極小值點。
考點:應用導數研究函數的單調性、極值。
點評:中檔題,研究函數的單調性、極值、最值等,是導數應用的基本問題。求函數的單調區間,主要研究導函數非負,確定增區間;利用導函數值非正,確定減區間。求函數的極值,遵循“求導數,求駐點,研究單調性,求極值”。本題(2)需要對a進行分類討論,易出錯。
科目:高中數學 來源:設計必修一數學北師版 北師版 題型:013
已知函數f(x)=2+log3x(1≤x≤9),則函數y=[f(x)]2+f(x2)的最大值為
A.6
B.13
C.22
D.33
查看答案和解析>>
科目:高中數學 來源:學習高手必修一數學蘇教版 蘇教版 題型:013
已知函數f(x)=2-x2,g(x)=x.若f(x)·g(x)=min{f(x),g(x)},那么f(x)·g(x)的最大值是
1
2
3
4
查看答案和解析>>
科目:高中數學 來源:學習周報 數學 人教課標高一版(A必修1) 2009-2010學年 第7期 總163期 人教課標高一版 題型:044
已知函數f(x)=2(log2x)2+2alog2
+b,當x=
時,f(x)有最小值-8,求b的值.
查看答案和解析>>
科目:高中數學 來源:湖北省孝感高級中學2011-2012學年高一上學期期中考試數學試題 題型:044
已知函數f(x)=2|x|-2.
![]()
(1)作出函數f(x)的圖象;
(2)由圖象指出函數的單調區間及單調性(不用證明);
(3)指出函數的值域.
查看答案和解析>>
科目:高中數學 來源:陜西省寶雞市2010屆高三教學質量檢測(二)數學文科試題 題型:013
已知函數f(x)=(
)2-log2x,若實數x0是方程f(x)=0的解,且0<x1<x0,則f(x1)值的情況是
恒為值負
等于0
恒為正值
不大于0
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com