中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設f(x)為定義在區間I上的函數.若對I上任意兩點x1,x2(x1≠x2)和實數λ∈(0,1),總有f(λx1+(1-λ)x2)<λf(x1)+(1-λ)f(x2),則稱f(x)為I上的嚴格下凸函數.若f(x)為I上的嚴格下凸函數,其充要條件為:對任意x∈I有f(x)>0成立(f(x)是函數f(x)導函數的導函數),則以下結論正確的有______.
①f(x)=
2x+2014
3x+7
,x∈[0,2014]是嚴格下凸函數.
②設x1,x2∈(0,
π
2
)且x1≠x2,則有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2)

③若f(x)是區間I上的嚴格下凸函數,對任意x0∈I,則都有f(x)>f′(x0)(x-x0)+f(x0
④f(x)=
1
6
x3
+sinx,(x∈(
π
6
π
3
))是嚴格下凸函數.
①因為f(x)=
2x+2014
3x+7
=
2
3
(3x+7)+2014-
14
3
3x+7
=
2
3
+
6028
9x+21
,所以f'(x)=-
6028×9
(9x+21)2
=-
6028
(3x+7)2

所以f(x)=
2×3×6028
(3x+7)3
,當x∈[0,2014]時,f(x)>0恒成立,所以①正確.
②若x1=
π
3
x2=
π
6
,則
1
2
(tanx1+tanx2)=
1
2
(tan
π
3
+tan
π
6
)=
1
2
(
3
3
+
3
)=
2
3
3
,而
1
2
(tan?
x1+x2
2
=tan?
π
3
+
π
6
2
)=tan?
π
4
=1

所以有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2)
不成立,所以②錯誤.
③因為f(x)=x2為嚴格下凸函數,則f'(x)=2x,f(x)=2>0恒成立,當x0=1時,f′(1)=2,f(1)=1,
此時不等式等價為,f(x)>2(x-1)+1=2x-1,當x=0時,f(0)=0>-1不成立,所以③錯誤.
④若f(x)=
1
6
x3
+sinx,則f'(x)=
1
2
x2+cosx
,f(x)=x-sinx,當x∈[
π
6
π
3
],設y=x-sinx,則y'=1-cosx≥0,所以函數f(x)=x-sinx單調遞增,
所以f
π
6
)=
π
6
-sin
π
6
=
π
6
-
1
2
>0
),所以f(x)=
1
6
x3
+sinx,(x∈(
π
6
π
3
))是嚴格下凸函數,所以④正確.
故答案為:①④.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•天河區三模)設f(x)是定義在區間(1,+∞)上的函數,其導函數為f'(x).如果存在實數a和函數h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),則稱函數f(x)具有性質P(a).
(1)設函數f(x)=Inx+
b+2x+1
(x>1)
,其中b為實數.
(i)求證:函數f(x)具有性質P(b);
(ii)求函數f(x)的單調區間.
(2)已知函數g(x)具有性質P(2),給定x1,x2∈(1,+∞),x1<x2,設m為實數,a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•順義區二模)設定義在R上的函數f(x)是最小正周期為2π的偶函數,f′(x)是f(x)的導函數.當x∈[0,π]時,0<f(x)<1;當x∈(0,π)且x≠
π
2
時,(x-
π
2
)f′(x)<0
.則函數y=f(x)-cosx在[-3π,3π]上的零點個數為
6
6

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•奉賢區二模)設f(x)是定義在R上以2為周期的偶函數,已知x∈(0,1),f(x)=log
1
2
(1-x)
,則函數f(x)在(1,2)上的解析式是
y=log
1
2
(x-1)
y=log
1
2
(x-1)

查看答案和解析>>

同步練習冊答案