(12分)設(shè)
、
分別是橢圓
,![]()
的左、右焦點(diǎn),
是該橢圓上一個(gè)動(dòng)點(diǎn),且
,
。
、求橢圓
的方程;
、求出以點(diǎn)
為中點(diǎn)的弦所在的直線方程。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線![]()
和直線
沒(méi)有公共點(diǎn)(其中
、
為常數(shù)),動(dòng)點(diǎn)
是直線
上的任意一點(diǎn),過(guò)
點(diǎn)引拋物線
的兩條切線,切點(diǎn)分別為
、
,且直線
恒過(guò)點(diǎn)
.
(1)求拋物線
的方程;
(2)已知
點(diǎn)為原點(diǎn),連結(jié)
交拋物線
于
、
兩點(diǎn),
證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
P為橢圓
+
=1上任意一點(diǎn),F1、F2為左、右焦點(diǎn),如圖所示.
(1)若PF1的中點(diǎn)為M,求證:|MO|=5-
|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點(diǎn)P,使
·
=0,若存在,求出P點(diǎn)的坐標(biāo), 若不存在,試說(shuō)明理由![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的長(zhǎng)軸長(zhǎng)為2a,焦點(diǎn)是F1(-
,0)、F2(
,0),點(diǎn)F1到直線x=-
的距離為
,過(guò)點(diǎn)F2且傾斜角為銳角的直線l與橢圓交于A、B兩點(diǎn),使得|F2B|=3|F2A|.
(1)求橢圓的方程;
(2)求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線關(guān)于y軸對(duì)稱(chēng),它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過(guò)點(diǎn)M(
),
求它的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
21.(本小題滿(mǎn)分14分)
已知直線
過(guò)拋物線
的焦點(diǎn)
且與拋物線相交于兩點(diǎn)
,自
向準(zhǔn)線
作垂線,垂足分別為
.
(1)求拋物線
的方程;
(2)證明:無(wú)論
取何實(shí)數(shù)時(shí),
,
都是定值;
(3)記
的面積分別為
,試判斷
是否成立,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知橢圓
經(jīng)過(guò)點(diǎn)M(-2,-1),離心率為
。過(guò)點(diǎn)M作傾斜角
互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q。
(I)求橢圓C的方程;
(II)
能否為直角?證明你的結(jié)論;
(III)證明:直線PQ的斜率為定值,并
求這個(gè)定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
.
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,
且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com