中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設點P到點(-1,0)、(1,0)距離之差為2m,到x、y軸的距離之比為2,求m的取值范圍.
設點P的坐標為(x,y),依題設得
|y|
|x|
=2
,即y=±2x,x≠0
因此,點P(x,y)、M(-1,0)、N(1,0)三點不共線,得||PM|-|PN||<|MN|=2
∵||PM|-|PN||=2|m|>0
∴0<|m|<1
因此,點P在以M、N為焦點,實軸長為2|m|的雙曲線上,故
x2
m2
-
y2
1-m2
=1

將y=±2x代入
x2
m2
-
y2
1-m2
=1
,并解得x2=
m2(1-m2)
1-5m2
≥0,
因為1-m2>0,所以1-5m2>0,
解得0<|m|<
5
5

即m的取值范圍為(-
5
5
,0)∪(0,
5
5
)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設點P到點(-1,0)、(1,0)距離之差為2m,到x、y軸的距離之比為2,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設點P到點M(-1,0)、N(1,0)距離之差為2m,到x軸、y軸距離之比為2,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2006年高考第一輪復習數學:8.2 雙曲線(解析版) 題型:解答題

設點P到點(-1,0)、(1,0)距離之差為2m,到x、y軸的距離之比為2,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2002年全國統一高考數學試卷(理科)(解析版) 題型:解答題

設點P到點(-1,0)、(1,0)距離之差為2m,到x、y軸的距離之比為2,求m的取值范圍.

查看答案和解析>>

同步練習冊答案