已知橢圓

與拋物線

有相同的焦點(diǎn)

,

是橢圓與拋物線的的交點(diǎn),若

經(jīng)過(guò)焦點(diǎn)

,則橢圓

的離心率為
▲ .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)直線

. 若直線
l與曲線
S同時(shí)滿足下列兩個(gè)條件:①直線
l與曲線
S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意
x∈
R都有

. 則稱直線
l為曲線
S的“上夾線”.
⑴已知函數(shù)

.求證:

為曲線

的“上夾線”.
⑵觀察下圖:
根據(jù)上圖,試推測(cè)曲線

的“上夾線”的方程,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分14分)已知區(qū)域

的外接圓
C與
x軸交于點(diǎn)
A1、
A2,橢圓
C1以線段
A1A2為長(zhǎng)軸,離心率

.
⑴求圓
C及橢圓
C1的方程;
⑵設(shè)圓

與

軸正半軸交于點(diǎn)D,

點(diǎn)為坐標(biāo)原點(diǎn),

中點(diǎn)為

,問(wèn)是否存在直線

與橢圓

交于

兩點(diǎn),且

?若存在,求出直線

與

夾角

的正切值的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)
已知?jiǎng)狱c(diǎn)

(

)到定點(diǎn)

的距離與到

軸的距離之差為

.
(Ⅰ)求動(dòng)點(diǎn)

的軌跡

的方程;
(Ⅱ)若

,

為

上兩動(dòng)點(diǎn),且

,求證:直線

必過(guò)一定
點(diǎn),并求出其坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
在△
ABC中,
A點(diǎn)的坐標(biāo)為(3,0),
BC邊長(zhǎng)為2,且
BC在
y軸上的區(qū)間[-3,3]上滑動(dòng).
(1)求△
ABC外心的軌跡方程;
(2)設(shè)直線
l∶
y=3
x+
b與(1)的軌跡交于
E,
F兩點(diǎn),原點(diǎn)到直線
l的距離為
d,求

的最大值.并求出此時(shí)
b的值
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分13分)
已知曲線
D:

交

軸于
A、
B兩點(diǎn),曲線
C是以
AB為長(zhǎng)軸,離心率

的橢圓。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)
M是直線

上的任一點(diǎn),以
OM為直徑的圓交曲線
D于
P,
Q兩點(diǎn)(
O為坐標(biāo)原點(diǎn))。若直線
PQ與橢圓
C交于
G,
H兩點(diǎn),交
x軸于點(diǎn)
E,且

。試求此時(shí)弦
PQ的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)橢圓

和雙曲線

的公共焦點(diǎn)為

,

是兩曲線的一個(gè)公共點(diǎn),則cos

的值等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
橢圓

(
a >
b > 0) 且滿足
a≤

,若離心率為
e,則
e2 +

的最小值為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
過(guò)拋物線

的焦點(diǎn)作直線

交拋物線于A、B兩點(diǎn),若線段AB中的橫坐標(biāo)為3,則|AB|等于 ( )
A.2 B.4 C.8 D.16
查看答案和解析>>