(本小題滿分12分)
已知橢圓的中心在原點,焦點在
軸上,長軸長是短軸長的2倍且經過點M(2,1),平行于OM的直線
在
軸上的截距為
,
交橢圓于A、B兩個不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與
軸始終圍成一個等腰三角形.
科目:高中數學 來源: 題型:解答題
已知點
為
軸上的動點,點
為
軸上的動點,點
為定點,且滿足
,
.
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)過點
且斜率為
的直線
與曲線
交于兩點
,
,試判斷在
軸上是否存在點
,使得
成立,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的中心在坐標原點O,長軸長為2
,離心率e=
,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C1:
,拋物線C2:
,且C1、C2的公共弦AB過橢圓C1的右焦點.
(Ⅰ)當AB⊥
軸時,求
、
的值,并判斷拋物線C2的焦點是否在直線AB上;
(Ⅱ)是否存在
、
的值,使拋物線C2的焦點恰在直線AB上?若存在,求出符合條件的
、
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點
是其左頂點,點C在橢圓上且
·
="0," |
|=|
|.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線
和橢圓交于M,N兩個不同點,求
面積的最大值,并求此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本大題滿分14分)
已知△
的兩個頂點
的坐標分別是
,
,且
所在直線的斜率之積等于
.
(Ⅰ)求頂點
的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(Ⅱ)當
時,過點
的直線
交曲線
于
兩點,設點
關于
軸的對稱點為
(
不重合).求證直線
與
軸的交點為定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
設雙曲線
的方程為
,
、
為其左、右兩個頂點,
是雙曲線
上的任意一點,作
,
,垂足分別為
、
,
與
交于點
.
(1)求
點的軌跡
方程;
(2)設
、
的離心率分別為
、
,當
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)已知中心在坐標原點O,焦點在
軸上,長軸長是短軸長的2倍的橢圓經過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線
平行于
,且與橢圓交于A、B兩個不同點.
(ⅰ)若
為鈍角,求直線
在
軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com