中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標函數z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為(  )
分析:作出x、y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
的圖象,由圖象判斷出最優解,令目標函數值為6,列出a,b的方程,再由基本不等式求出
1
a
+
2
b
的最小值,代入求解即可
解答:解:由題意、y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
的圖象如圖
目標函數z=ax+by(a>0,b>0)的最大值為6
從圖象上知,最優解是(2,4)
故有2a+4b=6
∴6=2a+4b≥2
2a×4b
=4
2ab
,等號當且僅當 a=2b時成立
則w=2ab的最大值為
9
4

故選A.
點評:本題考查簡單線性規劃的應用及不等式的應用,解決本題,關鍵是根據線性規劃的知識判斷出取最值時的位置,即最優解,由此得到參數的方程,再構造出積為定值的形式求出真數的最小值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標函數z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•奉賢區二模)(文)設x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

設x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習冊答案