中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知+=1的焦點F1、F2,在直線lx+y-6=0上找一點M,求以F1、F2為焦點,通過點M且長軸最短的橢圓方程.

 

【答案】

,得F1(2,0),F2(-2,0),F1關于直線l的對稱點F1/(6,4),連F1/F2交l于一點,即為所求的點M,∴2a=|MF1|+|MF2|=|F1/F2|=4,∴a=2,又c=2,∴b2=16,故所求橢圓方程為

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

求滿足下列條件的雙曲線的標準方程:
(1)已知雙曲線的焦點F1,F2在x軸上,離心率為
2
,且過點(4,-
10)

(2)與雙曲線
x2
9
-
y2
16
=1
有共同的漸近線,且經過點M(-3,2
3
)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的焦點F1(-1,0),F2(1,0),P是橢圓上一點,且|F1F2|是|PF1|,|PF2|等差中項,則橢圓的方程是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的焦點F1(0,-1),F2(0,1),P為橢圓上一點,且2|F1F2|=|PF1|+|PF2|,則橢圓的方程為(  )

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省深圳市翠園中學高二(上)期中數學試卷(理科)(解析版) 題型:解答題

已知+=1的焦點F1、F2,在直線l:x+y-6=0上找一點M,求以F1、F2為焦點,通過點M且長軸最短的橢圓方程.

查看答案和解析>>

同步練習冊答案