中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知與拋物線交于A、B兩點,
(1)若|AB|="10," 求實數的值。
(2)若, 求實數的值。
(1);(2) m=" -8" 。

試題分析:由,得,設,則
(1)所以,所以 6分     
(2)因為,所以,即,所以m= -8    6分
點評:本題考查弦長的運算,解題時要注意橢圓性質的靈活運用和弦長公式的合理運用。在求直線與圓錐曲線相交的弦長時一般采用韋達定理設而不求的方法,在求解過程中一般采取步驟為:設點→聯立方程→消元→韋達定理→弦長公式。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的左頂點,過右焦點且垂直于長軸的弦長為
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓交于點,與軸交于點,過原點與平行的直線與橢圓交于點,求證:為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

下列說法中,正確的有        
①若點是拋物線上一點,則該點到拋物線的焦點的距離是
②設為雙曲線的兩個焦點,為雙曲線上一動點,,則的面積為
③設定圓上有一動點,圓內一定點的垂直平分線與半徑的交點為點,則的軌跡為一橢圓;
④設拋物線焦點到準線的距離為,過拋物線焦點的直線交拋物線于A、B兩點,則成等差數列.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

的終邊經過點A,且點A在拋物線的準線上,則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的上頂點為,左焦點為,直線與圓相切.過點的直線與橢圓交于兩點.
(I)求橢圓的方程;
(II)當的面積達到最大時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線的焦點坐標是(   )
A.B.(1,0)C.D.(0,1)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的左焦點F為圓的圓心,且橢圓上的點到點F的距離最小值為
(I)求橢圓方程;
(II)已知經過點F的動直線與橢圓交于不同的兩點A、B,點M(),證明:為定值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線的漸近線為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

直線與圓心為D的圓交于AB兩點,則直線ADBD的傾斜角之和為(   )
A.πB.πC.πD.π

查看答案和解析>>

同步練習冊答案