中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知點A (x1,y1);B(x2,y2)是定義在區間M上的函數y=f(x)的圖象任意不重合兩點,直線AB的斜率總小于零,則函數y=f(x) 在區間M上總是( 。
分析:由點A、B不重合,不妨設x1<x2,則x1-x2<0,由斜率小于0可得f(x1)和f(x2)的大小關系,結合單調性的定義可得結論.
解答:解:∵點A、B在函數y=f(x)的圖象上,
∴y1=f(x1),y2=f(x2),
由點A、B不重合,不妨設x1<x2,則x1-x2<0,
∵直線AB的斜率總小于零,
y1-y2
x1-x2
=
f(x1)-f(x2)
x1-x2
<0,
∵x1-x2<0,
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
∴f(x)在在M上減函數,
故選C.
點評:本題考查函數單調性的判斷、直線的斜率公式,定義是判斷函數單調性的基本方法,要熟練掌握.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個動點,O是坐標原點,向量
OA
,
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|
,設圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明線段AB是圓C的直徑;
(2)當圓C的圓心到直線x-2y=0的距離的最小值為
2
5
5
時,求p的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知點A(x1,y1)在圓(x-2)2+y2=4上運動,點A不與(0,0)重合,點B(4,y0)在直線x=4上運動,動點M(x,y)滿足
OM
OB
,
OM
=
AB
.動點M的軌跡C的方程為F(x,y)=0.
(1)試用點M的坐標x,y表示y0,x1,y1;
(2)求動點M的軌跡方程F(x,y)=0;
(3)以下給出曲線C的五個方面的性質,請你選擇其中的三個方面進行研究,并說明理由.(若你研究的方面多于三個,我們將只對試卷解答中的前三項予以評分)
①對稱性;
②頂點坐標(定義:曲線與其對稱軸的交點稱為該曲線的頂點);
③圖形范圍;
④漸近線;
⑤對方程F(x,y)=0,當y≥0時,函數y=f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(x1,y1),B(x2,y2)是函數y=sinx(-π<x<0)圖象上的兩個不同點,且x1<x2,給出下列不等式:
①sinx1<sinx2;
sin
x1
2
<sin
x2
2
;
1
2
(sinx1+sinx2)>sin
x1+x2
2
;
sinx1
x1
sinx2
x2

其中正確不等式的序號是
②③
②③

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個動點,O是坐標原點,且OA⊥OB,設圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明:圓C是以線段AB為直徑的圓;
(2)當圓心C到直線x-2y=0的距離的最小值為
5
時,求P的值.

查看答案和解析>>

同步練習冊答案