中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知向量
a
=(2,3),
b
=(-1
,2),若m
a
+n
b
a
-2
b
共線,則
m
n
等于
-
1
2
-
1
2
分析:先求出m
a
+n
b
a
-2
b
的坐標,再根據兩個向量共線的性質可得它們的坐標對應成比列,從而求得m和n的關系.
解答:解:∵m
a
+n
b
=(2m-n,3m+2n),
a
-2
b
=(4,-1),
m
a
+n
b
a
-2
b
共線,則有
2m-n
4
=
3m+2n
-1

化簡可得 14m=-7n,∴
m
n
=-
1
2

故答案為-
1
2
點評:本題主要考查兩個向量共線的性質,兩個向量坐標形式的運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(2,-3),
b
=(-4,y)共線,則y=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(-2,3),
b
=(x,6),則“x=9”是“
a
b
”的(  )
A、充分但不必要條件
B、必要但不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2,3),
b
=(-1,2),若m
a
+n
b
a
-2
b
共線,若m>0,則
m
n2+1
的最大值為(  )
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(-2,3,1),
b
=(1,-1,0),則|
a
+
b
|=(  )
A、
26
B、
14
C、2
D、
6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2,3),
a
-2
b
=(-1,1),那么
a
b
的值為(  )

查看答案和解析>>

同步練習冊答案