已知等差數(shù)列
首項(xiàng)
,公差為
,且數(shù)列
是公比為4的等比數(shù)列,
(1)求
;
(2)求數(shù)列
的通項(xiàng)公式
及前
項(xiàng)和
;
(3)求數(shù)列
的前
項(xiàng)和
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列
的前n項(xiàng)和為
,且
,
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列
前n項(xiàng)和為
,且
,令
.求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
,
滿(mǎn)足
數(shù)列
的前
項(xiàng)和為
,
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)求證:
;
(Ⅲ)求證:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
的前n項(xiàng)和為
,已知
,![]()
(1)設(shè)
,證明數(shù)列
是等比數(shù)列 (2)求數(shù)列
的前
項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
滿(mǎn)足![]()
![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)令
,求數(shù)列
的前n項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)均為正數(shù)的數(shù)列{a
}滿(mǎn)足a
=2a
+a
a
,且a
+a
=2a
+4,其中n∈N
.
(Ⅰ)若b
=
,求數(shù)列{b
}的通項(xiàng)公式;
(Ⅱ)證明:
+
+…+
>
(n≥2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的各項(xiàng)均為正數(shù),且滿(mǎn)足
,
.
(1)推測(cè)
的通項(xiàng)公式;
(2)若
,令
,求數(shù)列
的前
項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列{an}中,a1=1,an+1=
(n∈N*).
(Ⅰ)求a2, a3, a4;
(Ⅱ)猜想an,并用數(shù)學(xué)歸納法證明;
(Ⅲ)若數(shù)列bn=
,求數(shù)列{bn}的前n項(xiàng)和sn。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com