已知數列{an}的首項a1=2a+1(a是常數,且a≠-1),
an=2an-1+n2-4n+2(n≥2),數列{bn}的首項b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項起是以2為公比的等比數列;
(2)設Sn為數列{bn}的前n項和,且{Sn}是等比數列,求實數a的值;
(3)當a>0時,求數列{an}的最小項.
(1)見解析(2)a=-
(3)當a∈
時,最小項為8a-1;當a=
時,最小項為4a或8a-1;當a∈
時,最小項為4a;當a=
時,最小項為4a或2a+1;
當a∈
時,最小項為2a+1.
【解析】(1)證明:∵bn=an+n2,∴bn+1=an+1+(n+1)2=2an+(n+1)2-4(n+1)+2+(n+1)2=2an+2n2=2bn(n≥2).
由a1=2a+1,得a2=4a,b2=a2+4=4a+4,∵a≠-1,
∴b2≠0,即{bn}從第2項起是以2為公比的等比數列.
(2)【解析】
由(1)知bn=![]()
Sn=a+
=-3a-4+(2a+2)2n,當n≥2時,
=
.
∵{Sn}是等比數列,∴
(n≥2)是常數,∴3a+4=0,即a=-
.
(3)【解析】
由(1)知當n≥2時,bn=(4a+4)2n-2=(a+1)2n,
∴an=![]()
∴數列{an}為2a+1,4a,8a-1,16a,32a+7,…
顯然最小項是前三項中的一項.
當a∈
時,最小項為8a-1;當a=
時,最小項為4a或8a-1;
當a∈
時,最小項為4a;當a=
時,最小項為4a或2a+1;
當a∈
時,最小項為2a+1.
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第八章第2課時練習卷(解析版) 題型:填空題
過直線l外一點P,作與l平行的平面,則這樣的平面有________個.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第5課時練習卷(解析版) 題型:解答題
已知數列{an}前n項和為Sn,且a2an=S2+Sn對一切正整數都成立.
(1)求a1,a2的值;
(2)設a1>0,數列
前n項和為Tn,當n為何值時,Tn最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第4課時練習卷(解析版) 題型:解答題
在各項均為正數的等比數列{an}中,已知a2=2a1+3,且3a2,a4,5a3成等差數列.
(1)求數列{an}的通項公式;
(2)設bn=log3an,求數列{anbn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第3課時練習卷(解析版) 題型:填空題
等比數列{an}的前n項和為Sn,已知S3=a2+10a1,a5=9,則a1=________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第3課時練習卷(解析版) 題型:解答題
在數列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)求證:數列{an-n}是等比數列;
(2)求數列{an}的前n項和Sn;
(3)求證:不等式Sn+1≤4Sn對任意n∈N*皆成立.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第2課時練習卷(解析版) 題型:解答題
已知等差數列{an}的前n項和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數列{an}的通項公式;
(2)若bn=
,則數列{bn}的最小項是第幾項,并求該項的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com