中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)對于任意的x∈R,都滿足f(-x)=f(x),且對任意的a,b∈(-∞,0],當a≠b時,都有
f(a)-f(b)a-b
<0.若f(m+1)<f(2),則實數m的取值范圍是
 
分析:由題意可得函數f(x)為偶函數,在(-∞,0]上是減函數,故由不等式可得-2<m+1<2,由此求得m的范圍.
解答:解:由f(-x)=f(x),可得函數f(x)為偶函數.
再根據對任意的a,b∈(-∞,0],當a≠b時,都有
f(a)-f(b)
a-b
<0,故函數在(-∞,0]上是減函數.
故由f(m+1)<f(2),
可得-2<m+1<2,解得-3<m<1,
故答案為:(-3,1).
點評:本題主要考查函數的單調性和奇偶性,得到-2<m+1<2,是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)對于一切實數m,n都有f(m+n)=f(m)+f(n)成立,且f(1)=2,則f(-2)=
-4
-4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)對于任意x,y∈R總有f(x+y)=f(x)+f(y),且當x>0時,f(x)<0,f(1)=-
23

(1)求證:f(x)是R上的奇函數.
(2)求證f(x)在R上是減函數.
(3)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)對于一切實數x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0
(I)求f(0)的值;
(II)求f(x)的解析式;
(III)設函數g(x)=f(x)+(a-3)x+a,如果函數y=g(x)在區間(-1,1)上有零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)對于任意m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且當x>0時f(x)>1.
(1)求證:函數f(x)在R上為增函數;
(2)若f(3)=4,解不等式f(a2+a-5)<2.

查看答案和解析>>

同步練習冊答案