已知左焦點(diǎn)為
的橢圓過點(diǎn)
.過點(diǎn)
分別作斜率為
的橢圓的動(dòng)弦
,設(shè)
分別為線段
的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若
為線段
的中點(diǎn),求
;
(3)若
,求證直線
恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).
(1)
;(2)
;(3)證明過程詳見解析,
.
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、直線的斜率、中點(diǎn)坐標(biāo)等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力、綜合分析和解決問題的能力.第一問,先利用左焦點(diǎn)
坐標(biāo)得右焦點(diǎn)
坐標(biāo),然后利用定義
,求得
,而
,得
,得出結(jié)論,橢圓為
;(2)先將點(diǎn)
坐標(biāo)代入橢圓,兩者作差得
,而
代入得
,利用韋達(dá)定理求
,同理求
,用
坐標(biāo)求
,用
點(diǎn)和
點(diǎn)斜式寫出直線
方程,利用
化簡,可分析過定點(diǎn)
.
試題解析:(1)由題意知
設(shè)右焦點(diǎn)![]()
2分![]()
橢圓方程為
4分
(2)設(shè)
則
①
② 6分
② ①,可得
8分
(3)由題意
,設(shè)![]()
直線
,即
代入橢圓方程并化簡得![]()
10分
同理
11分
當(dāng)
時(shí), 直線
的斜率![]()
直線
的方程為![]()
又
化簡得
此時(shí)直線過定點(diǎn)(0,
) 13分
當(dāng)
時(shí),直線
即為
軸,也過點(diǎn)(0,
)
綜上,直線過定點(diǎn)
. 14分
考點(diǎn):1.橢圓的定義;2.中點(diǎn)弦的解決方法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:
與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn)。求證: 直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在
軸上,離心率
,點(diǎn)
在橢圓C上.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若斜率為![]()
的直線
交橢圓
與
、
兩點(diǎn),且
、
、
成等差數(shù)列,點(diǎn)M(1,1),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以點(diǎn)F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)的橢圓C經(jīng)過點(diǎn)(1,
)。
(I)求橢圓C的方程;
(II)過P點(diǎn)分別以
為斜率的直線分別交橢圓C于A,B,M,N,求證:
使得![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
,圓
,動(dòng)圓
與已知兩圓都外切.
(1)求動(dòng)圓的圓心
的軌跡
的方程;
(2)直線
與點(diǎn)
的軌跡
交于不同的兩點(diǎn)
、
,
的中垂線與
軸交于點(diǎn)
,求點(diǎn)
的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知圓
,圓
,動(dòng)圓
與圓
外切并且與圓
內(nèi)切,圓心
的軌跡為曲線
。
(Ⅰ)求
的方程;
(Ⅱ)
是與圓
,圓
都相切的一條直線,
與曲線
交于
,
兩點(diǎn),當(dāng)圓
的半徑最長是,求
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的右焦點(diǎn)為
,上頂點(diǎn)為B,離心率為
,圓
與
軸交于
兩點(diǎn)
(Ⅰ)求
的值;
(Ⅱ)若
,過點(diǎn)
與圓
相切的直線
與
的另一交點(diǎn)為
,求
的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
中,點(diǎn)
到兩點(diǎn)
的距離之和等于4,設(shè)點(diǎn)
的軌跡為
,直線
與
交于
兩點(diǎn).
(1)寫出
的方程;
(2)若點(diǎn)
在第一象限,證明當(dāng)
時(shí),恒有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的長軸兩端點(diǎn)分別為
,
是橢圓上的動(dòng)點(diǎn),以
為一邊在
軸下方作矩形
,使
,
交
于點(diǎn)
,
交
于點(diǎn)
.![]()
(Ⅰ)如圖(1),若
,且
為橢圓上頂點(diǎn)時(shí),
的面積為12,點(diǎn)
到直線
的距離為
,求橢圓的方程;
(Ⅱ)如圖(2),若
,試證明:
成等比數(shù)列.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com