中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知復數z=
1+i
1-i
+(1-i)2(i
是虛數單位),b是z的虛部,且函數f(x)=loga(2x2-bx)(a>0且a≠1)在區間(0,
1
2
)內f(x)>0
恒成立,則函數f(x)的遞增區間是
 
分析:求出z,得出虛部為-1,即b=-1,由x的范圍求出真數部分的范圍,結合f(x)>0,得出0<a<1,由復合函數的單調性,求內層函數的減區間,與真數部分大于0的x的取值范圍取交集,得要求的區間.
解答:解:∵z=
(1+i)2
(1-i)(1+i)
+(-2i)=i-2i=-i,∴b=-1,
∴f(x)=loga(2x2+x)=loga[2(x+
1
4
)
2
-
1
8
]

∵x∈(0,
1
2
),∴x+
1
4
∈(
1
4
3
4
),∴(x+
1
4
)
2
∈(
1
16
9
16
),
∴2(x+
1
4
)
2
-
1
8
∈(0,1),又∵f(x)>0,∴0<a<1,
∵y=2x2+x的減區間為(-∞,-
1
4
],又2x2+x>0得x<-
1
2
或x>0,
∴函數f(x)的遞增區間是(-∞,-
1
2
).
故答案為(-∞,-
1
2
).
點評:本題涉及的知識點有,虛數的運算,復合函數單調性的判斷方法,同增異減,本題注意對數形式的真數部分要大于0,難點要根據自變量的范圍確定出真數部分的范圍,進而判斷a的范圍,判斷出外層函數的增減性.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知復數z=
1+i1-i
(i是虛數單位),則|z|=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=
1+i
1-i
(i為虛數單位),則z=(  )
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=
1-i
1+i
.
z
是z的共軛復數,則|
.
z
|
等于(  )
A、4
B、2
C、1
D、
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=
1+i
1-i
,則復數z的虛部為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•臺州二模)已知復數z=
1+i1-i
,則z2=
-1
-1

查看答案和解析>>

同步練習冊答案