(10分)已知拋物線的頂點在原點,它的準線過雙曲線
的一個焦點,并與雙曲線的實軸垂直,已知拋物線與雙曲線的交點為
.
(1)求拋物線的標準方程; (2)求雙曲線的標準方程.
(1)
.(2)
.
解析試題分析:(1)因為拋物線過點
,并且焦點在x軸上,所以此拋物線的開口向右,可設其方程為
,根據過點
,代入拋物線方程即可得到p值,從而求出拋物線的方程.
(2)據(1)可知雙曲線的一個焦點坐標(1,0),另一個焦點坐標為(-1,0),再利用雙曲線的定義到兩焦點的距離之間的絕對值等于2a,可求出a的值,從而得到b的值,最終求得雙曲線方程.
(1)由題意知,拋物線的焦點在
軸上,又過點
,
所以,設拋物線方程為
, 代入點
,有![]()
得
, 所以,拋物線的方程為
.
(2)由(1)知所求雙曲線的一個焦點為
,
設所求雙曲線方程為
代入點
,得![]()
所以雙曲線方程為
.
考點:雙曲線與拋物線的標準,雙曲線的定義.
點評:本小題在求拋物線方程與雙曲線方程時都可以采用特定系數法,但在求雙曲線的標準方程如果利用定義就比較簡單.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分) 已知橢圓
的離心率
,A,B
分別為橢圓的長軸和短軸的端點,
為AB的中點,O為坐標原點,且
.
(1)求橢圓的方程;
(2)過(-1,0)的直線
交橢圓于P,Q兩點,求△POQ面積最大時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
如圖,設
是圓
上的動點,點D是
在
軸上的投影,M為
D上一點,且![]()
(Ⅰ)當
的在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為
的直線被C所截線段的長度。![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題13分)曲線
上任意一點M滿足
, 其中F
(-
F
(
拋物線
的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(1)求
,
的標準方程;
(2)請問是否存在直線
滿足條件:①過
的焦點
;②與
交于不同
兩點
,
,且滿足
?若存在,求出直線
的方程;若不
存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)已知橢圓
右焦點為
,M為橢圓的上頂點,O為坐標原點,且
是等腰直角三角形,(1)求橢圓的方程(2)過M分別作直線MA,MB,交橢圓于A,B兩點,設兩直線的斜率分別為
,且
,證明:直線AB過定點,并求定點的坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
點A、B分別是以雙曲線![]()
的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方,
(1)求橢圓C的的方程;
(2)求點P的坐標;
(3)設M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)在平面直角坐標系中,已知點
,過點
作拋物線
的切線,其切點分別為
(其中
)。
⑴ 求
的值;
⑵ 若以點
為圓心的圓與直線
相切,求圓的面積。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:
,
為拋物線上一點,
為
關于
軸對稱的點,
為坐標原點.(1)若
,求
點的坐標;
(2)若過滿足(1)中的點
作直線
交拋物線
于
兩點, 且斜率分別為
,且
,求證:直線
過定點,并求出該定點坐標.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com