中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
一個多面體的直觀圖和三視圖如下:(其中分別是中點)

(1)求證:平面;
(2)求多面體的體積.
(1) 取中點,連,由分別是中點,可設:, ∴面 (2)

試題分析:(1)由三視圖知,該多面體是底面為直角三角形的直三棱柱,且,
,∴.     ---2分
中點,連,由分別是中點,可設:,
∴面…          ---8分
(2)作,由于三棱柱為直三棱柱
,
,---12
點評:本題的關鍵是先由三視圖找到直觀圖中對應的邊長及邊的垂直關系
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(滿分12分)已知:正方體中,棱長分別為的中點,的中點,

(1)求證://平面
(2)求:到平面的距離。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.

(Ⅰ)求證:AD⊥平面SBC;
(Ⅱ)試在SB上找一點E,使得平面ABS⊥平面ADE,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知直線m,n與平面α,β,給出下列三個命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則n⊥m;
③若m⊥α,m∥β,則α⊥β.
其中真命題的個數是______個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線段BC、SB上的一點(端點除外),滿足.(
①求證:對于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF為直角三角形,若存在,求出所有符合條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

A-BCD是各條棱長都相等的三棱錐.,那么AB和CD所成的角等于_______。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,平行四邊形中,沿折起到的位置,使平面平面

(I)求證:;     
(Ⅱ)求三棱錐的側面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

正方體ABCD—A1B1C1D1中,E、F分別是AB、B1C的中點,則EF與平面ABCD所成的角的正切值為(  )

A. 2
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線l,m,平面α,β,且l⊥α,mβ,給出四個命題:(  )
①若α∥β,則l⊥m;②若l⊥m,則α∥β;③若α⊥β,則l∥m;
其中真命題的個數是(  ).
A.3B.2C.1D.0

查看答案和解析>>

同步練習冊答案