在平面直角坐標系
中,動點
滿足:點
到定點
與到
軸的距離之差為
.記動點
的軌跡為曲線
.
(1)求曲線
的軌跡方程;
(2)過點
的直線交曲線
于
、
兩點,過點
和原點
的直線交直線
于點
,求證:直線
平行于
軸.
(1).
;(2).詳見解析;
解析試題分析:(1)依題意知,動點
滿足:點
到定點
與到
軸的距離之差為
,由此可得
,進而求曲線C方程;
(2)法Ⅰ:設
,求出直線
的方程為
,將直線與拋物線方程聯立
得
,得
,求出直線
的方程為
進而點
的坐標為
![]()
直線
平行于
軸;
法Ⅱ:設
的坐標為
,求出
的方程為
得到點
的縱坐標為
, 由于
, 則直線
的方程為
得點
的縱坐標為
,則
軸;當
時,結論也成立,故命題得證.
試題解析:(1)依題意:
2分
4分
6分
注:或直接用定義求解.
(2)法Ⅰ:設
,直線
的方程為![]()
由
得
8分![]()
直線
的方程為
點
的坐標為
10分![]()
直線
平行于
軸. 13分
法Ⅱ:設
的坐標為
,則
的方程為![]()
點
的縱坐標為
, 8分
直線
的方程為![]()
點
的縱坐標為
. 11分
軸;當
時,結論也成立,
直線
平行于
軸. 13分.
考點:1. 軌跡方程;2. 直線與圓錐曲線的綜合問題.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知對于任意實數k,直線(
k+1)x+(k-
)y-(3k+
)=0恒過定點F.設橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+
.
(1)求橢圓C的方程;
(2)設(m,n)是橢圓C上的任意一點,圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,焦距為
的橢圓
的兩個頂點分別為
和
,且
與n
,
共線.![]()
(1)求橢圓
的標準方程;
(2)若直線
與橢圓
有兩個不同的交
點
和
,且原點
總在以
為直徑的圓的內部,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的左焦點為
,且過點
.![]()
(1)求橢圓
的方程;
(2)設過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足
.
①若
,求
的值;
②若M、N分別為橢圓E的左、右頂點,證明: ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓C:
=1(a>b>0)的離心率e=
,右焦點到直線
=1的距離d=
,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明,點O到直線AB的距離為定值,并求弦AB長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定點
,曲線C是使
為定值的點
的軌跡,曲線
過點
.
(1)求曲線
的方程;
(2)直線
過點
,且與曲線
交于
,當
的面積取得最大值時,求直線
的方程;
(3)設點
是曲線
上除長軸端點外的任一點,連接
、
,設
的角平分線
交曲線
的長軸于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓的方程為
,斜率為1的直線不經過原點
,而且與橢圓相交于
兩點,
為線段
的中點.
(1)問:直線
與
能否垂直?若能,
之間滿足什么關系;若不能,說明理由;
(2)已知
為
的中點,且
點在橢圓上.若
,求橢圓的離心率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓
的右頂點為A(2,0),點P(2e,
)在橢圓上(e為橢圓的離心率).![]()
(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足
,且
,求實數λ的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com