中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知二次函數
(1)當時,的最大值為,求的最小值;
(2)對于任意的,總有,試求的取值范圍.

(1)的最小值為(2)

解析試題分析:(1)由已知條件可知,當取得最大值,由此得到的解析式,進而得到f(x)的最小值.
(2)根據已知條件結合換元法把命題轉化為:任給,不等式,恒成立.由此入手,能夠求出實數a的取值范圍.
試題解析:(1)由,故當取得最大值,即,所以,所以,所以的最小值為.
(2)對于任意的,總有,令
則命題轉化為:任給,不等式
時,滿足
時,有對于任意的恒成立;
,所以
所以要使恒成立,則有.
考點:二次函數的性質;正弦函數的定義域和值域.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,(1)若的最小值為2,求值;(2)設函數有零點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的定義域為集合,關于的不等式的解集為,若,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩個工廠,甲廠位于一直線河岸的岸邊處,乙廠與甲廠在河的同側,乙廠位于離河岸40千米的處,乙廠到河岸的垂足相距50千米,兩廠要在此岸邊之間合建一個供水站,從供水站到甲廠和乙廠的水管費用分別為每千米3元和5元,若千米,設總的水管費用為元,如圖所示,
(1)寫出關于的函數表達式;
(2)問供水站建在岸邊何處才能使水管費用最省? 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知上的奇函數,且當時,.
(1)求的表達式;
(2)畫出的圖象,并指出的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,函數.
⑴若不等式對任意恒成立,求實數的最值范圍;
⑵若,且函數的定義域和值域均為,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠生產一種產品的原材料費為每件40元,若用x表示該廠生產這種產品的總件數,則電力與機器保養等費用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產品的成本費P(x)(元)表示成產品件數x的函數,并求每件產品的最低成本費;
(2)如果該廠生產的這種產品的數量x不超過3000件,且產品能全部銷售,根據市場調查:每件產品的銷售價Q(x)與產品件數x有如下關系:Q(x)=170-0.05x,試問生產多少件產品時,總利潤最高?(總利潤=總銷售額-總成本)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知都是實數,且
(1)求不等式的解集;
(2)若對滿足條件的所有實數都成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

給出下列四個命題:
①函數)與函數)的定義域相同;
②函數的值域相同;③函數都是奇函數;④
函數在區間上都是增函數,其中正確命題的序號是_____________。(把你認為正確的命題序號都填上)

查看答案和解析>>

同步練習冊答案