(本小題滿分12分)
已知直線
過橢圓
的右焦點(diǎn)
,拋物線:
的焦點(diǎn)為橢圓
的上頂點(diǎn),且直線
交橢圓
于
、
兩點(diǎn),點(diǎn)
、
、
在直線
上的射影依次為點(diǎn)
、
、
.
(1)求橢圓
的方程;
(2)若直線l交y軸于點(diǎn)
,且
,當(dāng)
變化時,探求
的值是否為定值?若是,求出
的值,否則,說明理由;
(3)連接
、
,試探索當(dāng)
變化時,直線
與
是否相交于定點(diǎn)?若是,請求出定點(diǎn)的坐標(biāo),并給予證明;否則,說明理由.
(1) ![]()
(2) ![]()
(3) ![]()
【解析】解:(Ⅰ)易知橢圓右焦點(diǎn)
∴
,
拋物線
的焦點(diǎn)坐標(biāo)![]()
![]()
![]()
橢圓
的方程![]()
(Ⅱ)易知
,且
與
軸交于
,
設(shè)直線
交橢圓于![]()
由![]()
∴![]()
∴![]()
又由![]()
同理![]()
∴![]()
∵ ![]()
∴![]()
所以,當(dāng)
變化時,
的值為定值
;
(Ⅲ)先探索,當(dāng)
時,直線
軸,
則
為矩形,由對稱性知,
與
相交
的中點(diǎn)
,且
,
猜想:當(dāng)
變化時,
與
相交于定點(diǎn)![]()
證明:由(Ⅱ)知
,∴![]()
當(dāng)
變化時,首先證直線
過定點(diǎn)
,
方法1)∵![]()
當(dāng)
時,![]()
![]()
![]()
∴點(diǎn)
在直線
上,
同理可證,點(diǎn)
也在直線
上;
∴當(dāng)
變化時,
與
相交于定點(diǎn)![]()
方法2)∵
,![]()
![]()
![]()
∴
,∴
、
、
三點(diǎn)共線,同理可得
、
、
也三點(diǎn)共線;
∴當(dāng)
變化時,
與
相交于定點(diǎn)![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的
、
、
.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com