中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數f(x)的定義域為(0,+∞)且對任意正實數x、y都有f(xy)=f(x)+f(y)恒成立.已知f(2)=1且x>1時f(x)>0.
(1)求f(
12
)的值;
(2)判斷f(x)在(0,+∞)上的單調性,并證明;
(3)一個各項均為正數的數列{an}滿足f(Sn)=f(an)+f(an+1)-1(n∈N*),其中Sn是數列{an}的前n項和,求{an}的通項公式.
分析:(1)利用賦值法求值.
(2)利用單調性的定義證明函數的單調性;注意應用抽象函數的相關性質.
(3)先得出和與通項的關系Sn=
an(an+1)
2
,(n∈N*),得出S n-1=
an-1(an-1+1)
2
,n≥2,兩式相減,得出數列遞推式,再去變形,求通項公式.
解答:解:(1)令x=y=1,得f(1)=0
而令x=2,y=
1
2
,得f(1)=f(2)+f(
1
2

∴f(
1
2
)=-f(2)=-1,(4分)
(2)在(0,+∞)上任取兩數x1,x2,且x1<x2
x2
x1
=k,則f(k)>0
∴f(x2)=f(kx1)=f(k)+f(x1)>f(x1
∴f(x)在(0,+∞)上是單調增函數.(8分)
(3)f(Sn)=f(an)+f(an+1)-1(n∈N*
=f(an)+f(an+1)+f(
1
2

=f[
an(an+1)
2
],
由于f(x)在(0,+∞)上是單調增函數,
∴Sn=
an(an+1)
2
,n∈N*
∴S n-1=
an-1(an-1+1)
2
,n≥2
兩式相減,有
a
2
n
-
a
2
n-1
+an-an-1
2
=an
整理得(an+an-1)(a n-a n-1-1)=0
∵an>0,∴a n-a n-1-1=0,a n-a n-1=1,n≥2
所以數列{an}是公差為1的等差數列,
當n=1時,a1=S1=
a1(a1+1)
2
,a1=1
∴an=n        (14分)
點評:本題考查抽象函數的單調性,考查數列與函數的綜合,考查單調性的證明,考查數列通項的求解,正確理解題意是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)的定義在R上的偶函數,且是以4為周期的周期函數,當x∈[0,2]時,f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關系為
a>b
a>b

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)的定義域為D,若對于任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數f(x)在D上為非減函數.設函數f(x)為定義在[0,1]上的非減函數,且滿足以下三個條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當x∈[0,
1
4
]
時,f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

設函數f(x)的定義在R上的偶函數,且是以4為周期的周期函數,當x∈[0,2]時,f(x)=2x-cosx,則a=f(-數學公式)與b=f(數學公式)的大小關系為________.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年安徽省蚌埠二中高三(上)12月月考數學試卷(文科)(解析版) 題型:填空題

設函數f(x)的定義在R上的偶函數,且是以4為周期的周期函數,當x∈[0,2]時,f(x)=2x-cosx,則a=f(-)與b=f()的大小關系為   

查看答案和解析>>

科目:高中數學 來源:山東省月考題 題型:填空題

設函數f(x)的定義在R上的偶函數,且是以4為周期的周期函數,當x∈[0,2]時,f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關系為(    ).

查看答案和解析>>

同步練習冊答案