中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2009•濰坊二模)已知函數f(x)=ax-
ln(1+x)
1+x
在x=0處取得極值.
(I)求實數a的值,并判斷,f(x)在[0,+∞)上的單調性;
(Ⅱ)若數列{an}滿足a1=1,an+1=f(an),求證:0<an+1<an≤l;
(Ⅲ)在(II)的條件.下,記sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)
,求證:sn<1.
分析:(I)通過極值的性質,求實數a.然后利用導數判斷函數的單調性.
(Ⅱ)利用數學歸納法證明不等式.
(Ⅲ)利用(II)的結論去證明.
解答:解:(I)函數的導數為f′(x)=a-
1-ln?(1+x)
(1+x)2
,因為函數在x=0處取得極值,所以f'(0)=0,解得a=1.
f′(x)=1-
1-ln?(1+x)
(1+x)2
=
(1+x)2-1+ln?(1+x)
(1+x)2
=
x2+x+ln?(1+x)
(1+x)2

因為x≥0,所以ln(1+x)≥0,x2+x≥0,所以此時f'(x)≥0,即函數在[0,+∞)上單調遞增.
(Ⅱ)  由(I)知f(x)=x-
ln?(1+x)
1+x
,所以an+1=f(an)=an-
ln?(1+an)
1+an
,下面用數學歸納法證明an>0.
①當n=1時,an=1>0,成立.
②假設當n=k,(n∈N•)時ak>0.因為函數f(x)在[0,+∞)上單調遞增,所以f(ak)>f(0)=0,所以an+1=f(an)>0成立.
綜上an>0.又an-an+1=
ln?(1+an)
an
,因為an>0,所以an-an+1=
ln?(1+an)
1+an
>0
,即an>an+1
而a1=1,所以0<an+1<an≤l成立.
所以由①②可知0<an+1<an≤l成立.
(Ⅲ)由(II)知,0<an+1<an≤l,所以
1
an
1
an+1
1+
1
an
<1+
1
an+1
,即
1+an
an
1+an+1
an+1
,所以
an
1+an
an+1
1+an+1
>0

所以
a1?a2???an
(1+a1)(1+a2)???(1+an)
=
a1
1+a1
?
a2
1+a2
???
an
1+an
a1
1+a1
?
a1
1+a1
???
a1
1+a1
=(
a1
1+a1
)
n

所以sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)

<(
a1
1+a1
)+(
a1
1+a1
)
2
+…+(
a1
1+a1
)
n
=
a1
1+a1
[1-(
a1
1+a1
)
n
]
1-
a1
1+a1
a1
1+a1
1-
a1
1+a1
=a1=1

所以sn<1.
點評:本題考查利用導數研究函數的單調性問題以及利用數學歸納法證明不等式,綜合性較強,難度非常大,在運算過中要細心.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2009•濰坊二模)已知m,n為兩條不同的直線,α,β為兩個不同的平面,下列四個命題中,錯誤命題的個數是(  )
①α∥β,m?α,n?β,則m∥n;
②若m?α,n?α,且m∥β,n∥β,則α∥β;
③若α⊥β,m?α,則m⊥β; 
④若α⊥β,m⊥β,m?α,則m∥α.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•濰坊二模)在△ABC中,D為邊BC上的中點,AB=2,AC=1,∠BAD=30°,則AD=
3
2
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•濰坊二模)給出下列結論:
①函數y=tan
x
2
在區間(-π,π)上是增函數;
②不等式|2x-1|>3的解集是{x|x>2};
m=
2
是兩直線2x+my+1=0與mx+y-1=0平行的充分不必要條件;
④函數y=x|x-2|的圖象與直線y=
1
2
有三個交點.
其中正確結論的序號是
①③④
①③④
(把所有正確結論的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•濰坊二模)拋物線x2+12y=0的準線方程是
y=3
y=3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•濰坊二模)已知函數f(x)=-2sinx•cosx+2cos2x+1.
(1)設方程f(x)-1=0在(0,π)內有兩個零點x1,x2,求x1+x2的值;
(2)若把函數y=f(x)的圖象向左平移m(m>0)個單位使所得函數的圖象關于點(0,2)對稱,求m的最小值.

查看答案和解析>>

同步練習冊答案