已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F2(2,0),點(diǎn)A(2,3)在橢圓C1上,過點(diǎn)A的直線L與拋物線C2:x2=4y交于B,C兩點(diǎn),拋物線C2在點(diǎn)B,C處的切線分別為l1,l2,且l1與l2交于點(diǎn)P.
(1)求橢圓C1的方程;
(2)是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè)(不必求出點(diǎn)P的坐標(biāo));若不存在,說(shuō)明理由.
(1)
+
=1 (2)存在,有2個(gè)
解析解:(1)設(shè)橢圓方程為
+
=1(a>b>0),
由題意可知2a=
+
=8.
∴a=4,b2=a2-c2=12.
∴橢圓方程為
+
=1.
(2)設(shè)B(x1,
),C(x2,
),
直線BC的斜率為k,則k=
.
由y=
x2,得y′=
x.
∴點(diǎn)B、C處的切線l1、l2的斜率分別為
x1,
x2,
∴l(xiāng)1的方程為y-
=
x1(x-x1),
即y=
x1x-
,
同理,l2的方程為y=
x2x-
.
由![]()
解得![]()
∴P(2k,2k-3).
∵|PF1|+|PF2|=|AF1|+|AF2|,
∴點(diǎn)P在橢圓C1:
+
=1上,
∴
+
=1.
化簡(jiǎn)得7k2-12k-3=0.(*)
由Δ=122-4×7×(-3)=228>0,
可得方程(*)有兩個(gè)不等的實(shí)數(shù)根.
∴滿足條件的點(diǎn)P有兩個(gè).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓![]()
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)過點(diǎn)Q(0,
)的直線與橢圓交于A、B兩點(diǎn),與直線y=2交于點(diǎn)M(直線AB不經(jīng)過P點(diǎn)),記PA、PB、PM的斜率分別為k1、k2、k3,問:是否存在常數(shù)
,使得
若存在,求出名
的值:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的一個(gè)頂點(diǎn)為B(0,4),離心率
,直線
交橢圓于M,N兩點(diǎn)。
(1)若直線
的方程為
,求弦MN的長(zhǎng);
(2)如果△BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線
方程的一般式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知點(diǎn)D(0,-2),過點(diǎn)D作拋物線
:
的切線l,切點(diǎn)A在第二象限。![]()
(1)求切點(diǎn)A的縱坐標(biāo);
(2)若離心率為
的橢圓
恰好經(jīng)過A點(diǎn),設(shè)切線l交橢圓的另一點(diǎn)為B,若設(shè)切線l,直線OA,OB的斜率為k,
,①試用斜率k表示
②當(dāng)
取得最大值時(shí)求此時(shí)橢圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知圓P在x軸上截得線段長(zhǎng)為2
,在y軸上截得線段長(zhǎng)為2
.
(1)求圓心P的軌跡方程;
(2)若P點(diǎn)到直線y=x的距離為
,求圓P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知左焦點(diǎn)為F(-1,0)的橢圓過點(diǎn)E(1,
).過點(diǎn)P(1,1)分別作斜率為k1,k2的橢圓的動(dòng)弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為線段AB的中點(diǎn),求k1;
(3)若k1+k2=1,求證直線MN恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)拋物線
的焦點(diǎn)為
,點(diǎn)
,線段
的中點(diǎn)在拋物線上. 設(shè)動(dòng)直線
與拋物線相切于點(diǎn)
,且與拋物線的準(zhǔn)線相交于點(diǎn)
,以
為直徑的圓記為圓
.
(1)求
的值;
(2)證明:圓
與
軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn)
,使得圓
恒過點(diǎn)
?若存在,求出
的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線
相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),AN![]()
軸于N,若動(dòng)點(diǎn)Q滿足
(其中m為非零常數(shù)),試求動(dòng)點(diǎn)
的軌跡方程
.
(3)在(2)的結(jié)論下,當(dāng)
時(shí),得到動(dòng)點(diǎn)Q的軌跡曲線C,與
垂直的直線
與曲線C交于 B、D兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在原點(diǎn)的橢圓C的一個(gè)焦點(diǎn)為F(4,0),長(zhǎng)軸端點(diǎn)到較近焦點(diǎn)的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點(diǎn).
(1)求橢圓C的方程.
(2)若x1+x2=8,在x軸上是否存在一點(diǎn)D,使|
|=|
|?若存在,求出D點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com