中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
成等差數列的三個正數的和等于15,并且這三個數分別加上2、5、13后成為等比數列{bn}中的b3、b4、b5
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)數列{bn}的前n項和為Sn,求證:數列{Sn+
54
}是等比數列.
分析:(I)利用成等差數列的三個正數的和等于15可設三個數分別為5-d,5+d,代入等比數列中可求d,進一步可求數列{bn}的通項公式
(II)根據(I)及等比數列的前 n項和公式可求Sn,要證數列{Sn+
5
4
}是等比數列?
Sn+1+
5
4
Sn+
5
4
=q≠0
即可.
解答:解:(I)設成等差數列的三個正數分別為a-d,a,a+d
依題意,得a-d+a+a+d=15,解得a=5
所以{bn}中的依次為7-d,10,18+d
依題意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去)
故{bn}的第3項為5,公比為2
由b3=b1•22,即5=4b1,解得b1=
5
4

所以{bn}是以
5
4
首項,2為公比的等比數列,通項公式為bn=
5
4
2n-1

(II)數列{bn}的前和Sn=
5
4
(1-2n)
1- 2
=
5
4
2n-
5
4

Sn+
5
4
=
5•2n
4
,所以S1+
5
4
=
5
2
Sn+1+
5
4
Sn+
5
4
=
5•2n-1
5•2n-2
=2

因此{Sn+
5
4
}是以
5
2
為首項,公比為2的等比數列
點評:本題主要考查了等差數列、等比數列及前n和公式等基礎知識,同時考查基本運算能力
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

成等差數列的三個正數的和等于15,并且這三個數分別加上2、5、13后成為等比數列{bn}中的b3、b4、b5
(1)求數列{bn}的通項公式; 
(2)數列{bn}的前n項和為Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

成等差數列的三個正數的和等于15,并且這三個數分別加上1,3,9后又成等比數列,那么這三個數的乘積等于
105
105

查看答案和解析>>

科目:高中數學 來源: 題型:

成等差數列的三個正數的和等于15,并且這三個數分別加上1,3,9后又成等比數列,則這三個數分別是
3,5,7
3,5,7

查看答案和解析>>

科目:高中數學 來源:2011-2012學年陜西省高三開學第一次考試理科數學 題型:解答題

(12分)成等差數列的三個正數的和等于15,并且這三個數分別加上2、5、13

后成為等比數列中的

(1) 求數列的通項公式;

(2) 數列的前n項和為,求證:數列是等比數列.

 

 

查看答案和解析>>

同步練習冊答案