中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設實數x、y滿足
x≥1
y≥-1
x+y≤2
,則x-y的最小值是(  )
A、0B、-2C、2D、1
分析:作出不等式組對應的平面區域,作出目標函數對應的平行直線,將直線平移,由圖知過(1,1)時,截距最大,此時z最小,代入可得答案.
解答:解:如圖,滿足題設的x,y范圍如陰影區域所示,精英家教網
z=x-y即為 y=x-z,
在邊界點(1,1)處直線的截距-z取得最大值 0,
所以-z≤0,z≥0得z的最小值為 0.
故選A.
點評:平面區域的最值問題是線性規劃問題中一類重要題型,在解題時,關鍵是正確地畫出平面區域,分析表達式的幾何意義,然后結合數形結合的思想,分析圖形,找出滿足條件的點的坐標,即可求出答案.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設實數x,y滿足 
x-y-2≤0
x+2y-5≥0
y-2≤0
,則u=
x2+y2
xy
的取值范圍是(  )
A、[2,
5
2
]
B、[
5
2
10
3
]
C、[2,
10
3
]
D、[
1
4
,4]

查看答案和解析>>

科目:高中數學 來源: 題型:

設實數x,y滿足
x≤3
x-y+2≥0
x+y-4≥0
,則x2+y2的取值范圍是
[8,34]
[8,34]

查看答案和解析>>

科目:高中數學 來源: 題型:

設實數x,y滿足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,則
y
x
的最大值是
3
2
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設實數x,y滿足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,則z=
x
y
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•威海一模)設實數x,y滿足
x+2y-4≤0
x-y≥0
y>0
,則x-2y的最大值為
4
4

查看答案和解析>>

同步練習冊答案