橢圓
:
的左頂點為
,直線
交橢圓
于
兩點(
上
下),動點
和定點
都在橢圓
上.
(1)求橢圓方程及四邊形
的面積.
(2)若四邊形
為梯形,求點
的坐標.
(3)若
為實數,
,求
的取值范圍.
(1)
;
.(2)
. (3)
.
解析試題分析:(1)將D的坐標代入
即得
,從而得橢圓的方程為
.
將
代入
得
.由此可得
和
的面積,二者相加即得四邊形
的面積.(2)在橢圓中AP不可能平行BC,四邊形ABCP又為梯形,所以必有
,由此可得直線PC的方程,從而求得點P的坐標.(3)設
,由
得則
與
間的關系,即
,又因為點P在橢圓上,所以
,由此可得
,這樣利用三角函數的范圍便可求得
的范圍.
(1)因為點D在橢圓上,所以
,
所以橢圓的方程為
.
易得:
,
的面積為
.
直線BD的方程為
,即
.所以點A到BD的距離為
,
,
.
所以
.
(2)四邊形ABCP為梯形,所以
,直線PC的方程為:
即
.代入橢圓方程得
(舍),
將
代入
得
.所以點P的坐標為
.
(3)設
,則
,即![]()
因為點P在橢圓上,所以
,
由此可得
,
所以
.
考點:1、橢圓的方程;2、四邊形的面積;3、向量.
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
在平面直角坐標系
中,橢圓
的離心率為
,直線
被橢圓
截得的線段長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過原點的直線與橢圓
交于
兩點(
不是橢圓
的頂點).點
在橢圓
上,且
,直線
與
軸、
軸分別交于
兩點.
(i)設直線
的斜率分別為
,證明存在常數
使得
,并求出
的值;
(ii)求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓![]()
的焦點在x軸上,左右頂點分別為
,上頂點為B,拋物線
分別以A,B為焦點,其頂點均為坐標原點O,
與
相交于 直線
上一點P.
(1)求橢圓C及拋物線
的方程;
(2)若動直線
與直線OP垂直,且與橢圓C交于不同的兩點M,N,已知點
,求
的最小值。![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓
的圓心在坐標原點
,且恰好與直線
相切,設點A為圓上一動點,
軸于點
,且動點
滿足
,設動點
的軌跡為曲線![]()
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的左右頂點分別為
,離心率
.
(1)求橢圓的方程;
(2)若點
為曲線
:
上任一點(
點不同于
),直線
與直線
交于點
,
為線段
的中點,試判斷直線
與曲線
的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,過
的左焦點
的直線
被圓
截得的弦長為
.
(1)求橢圓
的方程;
(2)設
的右焦點為
,在圓
上是否存在點
,滿足
,若存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓的中心為原點O,長軸在x軸上,離心率
,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應的圓Q的標準方程.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓
.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線
,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com