中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知橢圓的離心率為,以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設,過點作與軸不重合的直線交橢圓于兩點,連結分別交直線兩點.試問直線的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.
(1);(2)詳見解析.

試題分析:(1)由直線和圓相切,求,再由離心率,得,從而求,進而求橢圓的方程;(2)要說明直線的斜率之積是否為定值,關鍵是確定兩點的坐標.首先設直線的方程,并與橢圓聯立,設,利用三點共線確定兩點的坐標的坐標,再計算直線的斜率之積,這時會涉及到,結合根與系數的關系,研究其值是否為定值即可.
試題解析:(1),故     4分
(2)設,若直線與縱軸垂直,  

中有一點與重合,與題意不符,
故可設直線.           5分
將其與橢圓方程聯立,消去得:
          6分
     7分
三點共線可知,,        8分
同理可得                                             9分
                  10分
       11分
所以
故直線的斜率為定值.                                  13分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C的兩個焦點分別為,且點在橢圓C上,又.
(1)求焦點F2的軌跡的方程;
(2)若直線與曲線交于M、N兩點,以MN為直徑的圓經過原點,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比為
(1)求橢圓C的方程;
(2)設點M(m,0)在橢圓C的長軸上,設點P是橢圓上的任意一點,若當最小時,點P恰好落在橢圓的右頂點,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知動圓:,則圓心的軌跡是(   )
A.直線  B.圓 C.拋物線的一部分 D.橢圓

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知圓E:,點,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡的方程;
(2)已知A,B,C是軌跡的三個動點,A與B關于原點對稱,且,問△ABC的面積是否存在最小值?若存在,求出此時點C的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的焦點為F1、F2,P是橢圓上一個動點,延長F1P到點Q,使|PQ|=|PF2|,則動點Q的軌跡為(  )
A.圓B.橢圓C.雙曲線一支D.拋物線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓中,以點為中點的弦所在直線斜率為(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在平面坐標系xOy中,拋物線的焦點F與橢圓的左焦點重合,點A在拋物線上,且,若P是拋物線準線上一動點,則的最小值為(   )
A.6B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設橢圓的兩個焦點分別為,點在橢圓上,且,則該橢圓的離心率為          

查看答案和解析>>

同步練習冊答案