中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知f(x)為R上的奇函數,且f(x+1)=-f(x),若存在實數a、b使得f(a+x)=f(b-x),則a、b應滿足關系
a+b=1+2k(k∈N*
a+b=1+2k(k∈N*
分析:利用換元法可得f(t)=f(a+b-t),再利用f(x)為R上的奇函數,f(t-(a+b))=-f(t),f[(t+a+b)-(a+b)]=-f[t+(a+b)],即f(t+(a+b))=-f(t)=f(t+1),再次換元令x=t+1,則f(x)=f(x+(a+b-1)),結合f(x+2)=f(x)可求得a、b應滿足關系.
解答:解:令a+x=t,則x=t-a,f(t)=f(a+b-t),
又f(x)為R上的奇函數,且f(x+1)=-f(x),
∴f(t-(a+b))=-f(t)=f(t+(a+b)),
∴f(t+(a+b))=f(t+1),
再令x=t+1,則f(x)=f(x+(a+b-1)),
由f(x+1)=-f(x)得f(x+2)=f(x),
∴f(x)是以2為周期的函數,∴a+b-1=2k(k∈N*).
故答案為:a+b=2k+1(k∈N*).
點評:本題考查函數奇偶性的性質,難點在于合理換元,充分利用函數的奇偶性與周期性解決問題,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)為R上的減函數,則滿足f(
1
x
)>f(1)
的實數x的取值范圍是(  )
A、(-∞,1)
B、(1,+∞)
C、(-∞,0)∪(0,1)
D、(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上的減函數,則滿足f(
1x2
)>f(1)
的實數x的取值范圍是
(-∞,-1)∪(1,+∞)
(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知 f(x)為R上的可導函數,且f(x)<f'(x)和f(x)>0對于x∈R恒成立,則有(  )
A、f(2)<e2-f(0),f(2010)>e2010-f(0)B、f(2)>e2-f(0),f(2010)>e2010-f(0)C、f(2)<e2-f(0),f(2010)<e2010-f(0)D、f(2)<e2-f(0),f(2010)<e2010-f(0)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上的偶函數,且當x≥0時,f(x)=x2-2x,則
(1)求f(x)在R上的解析式;
(2)寫出f(x)的單調區間.

查看答案和解析>>

同步練習冊答案