中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知下列命題:
①?x∈R,|x-1|+|x+2|>2;
②命題p:?x∈R,x2+x+1≠0,則¬p:?x∈R,x2+x+1=0;
③“x>2”是“x2-3x+2>0”的充分不必要條件;
④已知隨機變量P~N(2,σ2),P(ξ<4)=0.6,則P(0<ξ<2)=0.1,
其中真命題有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
D
分析:①根據絕對值不等式|a|+|b|≥|a±b|,可求得|x-1|+|x+2|的最小值,然后確定①的真假;
②根據命題p:“?x∈R,x2+x+1≠0”是全稱命題,其否定為特稱命題,將“任意的”改為“存在”,“≠“改為“=”即可得答案.
③判斷由前者能否推出后者成立,反之通過解二次不等式判斷后者成立能否推出前者成立,利用充要條件的定義得到結論.
④隨機變量P~N(2,σ2),得出正態分布曲線關于ξ=2對稱,由此得出P(ξ<0)=P(ξ>4),再利用P(ξ<4)=0.6,求出P(0<ξ<2)的值即得答案.
解答:①∵|x-1|+|x+2|≥|(x-1)-(x+2)|=3.2,∴①?x∈R,|x-1|+|x+2|>2,正確.
②:∵命題p:“?x∈R,x2+x+1≠0”是全稱命題
∴?p:?x∈R,x2+x+1=0.故②是真命題.
③當x>2成立時,有x2-3x+2>0成立,
當x2-3x+2>0成立時,有x>2或x<1,不一定有x>2成立
故“x>2”是x2-3x+2>0的充分不必要條件,正確;
④:∵隨機變量P~N(2,σ2),
∴正態分布曲線關于ξ=2對稱,
又ξ<0與ξ>4關于ξ=2對稱,
∴P(ξ>4)=P(ξ<0),
∴P(ξ<0)=0.4,
又∵P(0<ξ<2)=P(0<ξ<4)=[1-2P(ξ<0)]
∴P(0<ξ<2)=-P(ξ<0)=0.1,故④正確.
故選D.
點評:本題借助考查命題的真假,命題的否定,考查了絕對值不等式|a|+|b|≥|a±b|,考查正態分布曲線的特點等.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知下列命題:(1)已知函數f(x)=x+
p
x-1
(p為常數且p>0),若f(x)在區間(1,+∞)的最小值為4,則實數p的值為
9
4
; (2)?x∈[0,
π
2
],sinx+cosx>
2
;(3)正項等比數列{an}中:a4.a6=8,函數f(x)=x(x+a3)(x+a5)(x+a7),則f(0)=16
2
;(4)若數列{an}的前n項和為Sn=2n2-n+1,且bn=2an+1,則數列{bn}前n項和為Tn=4n2-n+2上述命題正確的序號是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知下列命題:
①?x∈R,|x-1|+|x+2|>2;
②命題p:?x∈R,x2+x+1≠0,則¬p:?x∈R,x2+x+1=0;
③“x>2”是“x2-3x+2>0”的充分不必要條件;
④已知隨機變量P~N(2,σ2),P(ξ<4)=0.6,則P(0<ξ<2)=0.1,
其中真命題有(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知下列命題:
①命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
②已知p,q為兩個命題,若“p∨q”為假命題,則“?p∨?q”為真命題;
③“a>2”是“a>5”的充分不必要條件;
④“若xy=0,則x=0且y=0”的逆否命題為真命題.
其中所有真命題的序號為

查看答案和解析>>

科目:高中數學 來源:2013年山東省高考數學預測試卷(06)(解析版) 題型:選擇題

已知下列命題:
①?x∈R,|x-1|+|x+2|>2;
②命題p:?x∈R,x2+x+1≠0,則¬p:?x∈R,x2+x+1=0;
③“x>2”是“x2-3x+2>0”的充分不必要條件;
④已知隨機變量P~N(2,σ2),P(ξ<4)=0.6,則P(0<ξ<2)=0.1,
其中真命題有( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案