中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知兩個向量滿足||=2,||=1,的夾角為60°,=2x+7=+x,x∈R.
(1)若的夾角為鈍角,求x的取值范圍;
(2)設函數f(x)=,求f(x)在[-1,1]上的最大值與最小值.
【答案】分析:(1)先確定的值,再由的夾角為鈍角可知<0,代入即可解題.
(2)根據(1)中的值確定函數f(x)的解析式,再根據二次函數的單調性求出在[-1,1]上的最大值與最小值.
解答:解:(1)=|a||b|cos60°=2×1×cos60°=1,的夾角為鈍角,得<0,且≠λ
=(2x+7)•(+x)=2x2+2+2x2+72
=8x+2x2+7+7x
=2x2+15x+7<0
解得
≠λ
可得,解得x≠
∴x的取值范圍是
(2)由(1)得,f(x)在[-1,1]上單調遞增,
∴f(x)min=f(-1)=2-15+7=-1,f(x)max=f(1)=2+15+7=24.
點評:本題主要考查向量的點乘運算和二次函數的最值問題.屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知兩個向量
a
b
滿足|
a
|=2,|
b
|=1,
a
b
的夾角為60°,
m
=2x
a
+7
b
n
=
a
+x
b
,x∈R.
(1)若
m
n
的夾角為鈍角,求x的取值范圍;
(2)設函數f(x)=
m
n
,求f(x)在[-1,1]上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知兩個向量滿足的夾角為,若向量

向量的夾角為鈍角,則實數的取值范圍是________________

查看答案和解析>>

科目:高中數學 來源: 題型:

已知兩個向量滿足的夾角為,若向量與向量的夾角為鈍角,則實數的取值范圍是_______________________

查看答案和解析>>

科目:高中數學 來源:2011-2012學年安徽省高三第二次聯考理科數學 題型:解答題

(本題滿分12分)已知兩個向量,其中,且滿足

(Ⅰ)求的值;  (Ⅱ)求的值.

 

 

查看答案和解析>>

同步練習冊答案