中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知二次函數f(x)=ax2+bx+c滿足條件f(-1),當x∈R時x≤f(x)
(x+1)2
4
恒成立.
(1)求f(1);
(2)求f(x)的解析式;
(3)若x1,x2∈(0,+∞),且
1
x1
1
x2
 =2
,求證:f(x1)•f(x2)≥1.
分析:(1)根據當x∈R時x≤f(x)
(x+1)2
4
恒成立. 令x=1,即可求得;
(2)根據f(1)=1,f(-1)=0,可得方程組,利用 x∈R時,f(x)≥x恒成立,可得ac≥
1
16
,借助于基本不等式可得∴ac≤
1
16
.從而可求函數的解析式;
(3))利用條件
1
x1
+
1
x2
=2
,x1,x2∈(0,+∞),借助于基本不等式,可得(x1+1)(x2+1)=x1x2+x1+x2+1=3x1x2+1≥4.從而得解.
解答:解:(1)∵x≤f(x)
(x+1)2
4

∴當x=1時.1≤f(1)
(1+1)2
4
=1

∴f(1)=1.
(2)由(1)知a+b+c=1,又f(-1)=0,∴a-b+c=0
從而
b=
1
2
a+c=
1
2
,又x∈R時,f(x)≥x恒成立.
即ax2+(b-1)x+c≥0,故
a>0
△=(b-1)2-4ac≤0

ac≥
1
16

∴c>0    而a+c=
1
2
≥ 2
ac

ac≤
1
16

ac=
1
16

∴a=c=
1
4
.∴f(x)=
1
4
x2+
1
2
x+
1
4

(3)∵
1
x1
+
1
x2
=2
,x1,x2∈(0,+∞),
∴x1+x2=2x1x2
x1+x2≥2
x1x2
 
 (當且僅當x1=x2=1時取等號)
2x1x2≥2
x1x2
 

∴x1x2≥1.
又(x1+1)(x2+1)=x1x2+x1+x2+1=3x1x2+1≥4.
∴f(x1)•f(x2)=
(x1+1)2
4
(x2+1)2
4
≥ 1
 (當且僅當x1=x2=1時取等號)
點評:本題以二次函數為載體,考查賦值法,考查恒成立問題,同時考查不等式的證明,關鍵是利用基本不等式求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2+2(m-2)x+m-m2
(I)若函數的圖象經過原點,且滿足f(2)=0,求實數m的值.
(Ⅱ)若函數在區間[2,+∞)上為增函數,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數F(x)=f(x)-kx,x∈[-2,2],記此函數的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2-16x+q+3.
(1)若函數在區間[-1,1]上存在零點,求實數q的取值范圍;
(2)若記區間[a,b]的長度為b-a.問:是否存在常數t(t≥0),當x∈[t,10]時,f(x)的值域為區間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣州一模)已知二次函數f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數.設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知二次函數f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案