中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知數列{an}的前n項和為Sn,且點Pn(Sn,an)(n∈N*)總在直線x-3y-1=0上.
(1)求數列{an}的通項公式;
(2)設Tn為數列{
1
an
}
的前n項和,若對?n∈N*總有Tn
1-m
2
成立,其中m∈N*,求m的最小值.
分析:(1)先利用點Pn(Sn,an)(n∈N*)總在直線x-3y-1=0上求出Sn=3an+1;再根據已知前n項和求通項公式的方法即可數列{an}的通項公式;
(2)先利用上面的結論求出數列{
1
an
}
的通項公式,再代入數列的求和公式求出Tn,進而求出其最大值(或其最大值的臨界值);最后再與
1-m
2
比較即可求出結論.
解答:解:(1)∵點Pn(Sn,an)(n∈N*)總在直線x-3y-1=0上.
∴Sn=3an+1
當n=1時,a1=3a1+1,∴a1=-
1
2

當n≥2時,an=Sn-Sn-1=3an-3an-12an=3an-1?
an
an-1
=
3
2
(n≥2)
即數列{an}是首項a1=-
1
2
,公比q=
3
2
的等比數列
an=a1qn-1=-
1
2
×(
3
2
)n-1

(2)∵an=-
1
2
×(
3
2
)n-1

1
an
=-2×(
2
3
)n-1

Tn=
1
a1
+
1
a2
+…+
1
an
=-2[1+(
2
3
)+(
2
3
)2+…+(
2
3
)n-1]

=-2×
[1-(
2
3
)
n
]
1-
2
3
=-6×[1-(
2
3
)n]
>-6
∵對?n∈N*總有Tn
1-m
2
成立
∴必須并且只需
1-m
2
≤-6
即m≥13.
∴m的最小值為13.
點評:本題主要考查數列的綜合知識以及數列與不等式相結合問題.解決第二問的關鍵在于把“對?n∈N*總有Tn
1-m
2
成立'轉化為求Tn的最大值(或其最大值的臨界值)問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

19、已知數列{an}的前n項和Sn=n2(n∈N*),數列{bn}為等比數列,且滿足b1=a1,2b3=b4
(1)求數列{an},{bn}的通項公式;
(2)求數列{anbn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

13、已知數列{an}的前n項和為Sn=3n+a,若{an}為等比數列,則實數a的值為
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案