中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知f1(x)=Asin(ωx+)(A>0,ω>0,||<)的部分圖象如下圖所示:

(1)求此函數的解析式f1(x);

(2)與f1(x)的圖象關于x=8對稱的函數解析式f2(x);求f1(x)+f2(x)單增區間

答案:
解析:

  (1)f1(x)= sin( X+ )

  (1)f1(x)=sin(X+)

  (2)當2kπ-π≤≤2kπ k∈Z時,即16k-8≤x≤16時,f1(x)+f2(x)為增函數即單調增區間為[16k-8,16k]k∈Z.


練習冊系列答案
相關習題

科目:高中數學 來源:成功之路·突破重點線·數學(學生用書) 題型:022

已知F1,F2是橢圓=1(________)的兩個焦點,P是橢圓上一點,且∠F1PF2,則△F1PF2的面積是b2.請將題目中空缺的一個可能條件填入“________”處.

查看答案和解析>>

科目:高中數學 來源:中學教材標準學案 數學 高二上冊 題型:044

解答題

已知橢圓的兩焦點為F1(-1,0)、F2(1,0),P為橢圓上一點,且2|F1F2|=|PF1|+|PF2|.

(1)求此橢圓的方程;

(2)若∠F1PF2,求△PF1F2的面積.

查看答案和解析>>

科目:高中數學 來源:中學教材標準學案 數學 高二上冊 題型:044

解答題

已知F1(-3,0)、F2(3,0)分別是橢圓的左、右焦點,P是橢圓上一點,滿足PF1⊥PF2,∠F1PF2的平分線交F1F2于M(1,0),求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:潮陽一中2007屆高三摸底考試、文科數學 題型:044

解答題

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑為圓相切,又知C的一個焦點與A關于直線y=x對稱.

(1)

求雙曲線C的方程;

(2)

若Q是雙曲線C上的任一點,F1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

(3)

設直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經過M(-2,0)及AB的中點,求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

同步練習冊答案