中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
如果函數f(x)滿足:對任意的實數n,m都有f(n+m)=f(n)+f(m)+12且f(n+m)=f(n)+f(m)+
1
2
f(
1
2
)=0,則f(1)+f(2)+f(3)+…+f(n)(n∈N*)等于(  )
A、n
B、n2
C、
n2
2
D、
n2
4
分析:依題意,令m=n=
1
2
,得f(1)=
1
2
,再令m=1,得:f(n+1)-f(n)=1,從而知數列{f(n)}是以
1
2
為首項,1為公差的等差數列,于是可求得f(1)+f(2)+…+f(n)的值.
解答:解:∵f(
1
2
)=0,
令m=n=
1
2
,得f(1)=2f(
1
2
)+
1
2
=
1
2

再令m=1,得:f(n+1)=f(n)+f(1)+
1
2
=f(n)+1,
∴f(n+1)-f(n)=1,
∴數列{f(n)}是以
1
2
為首項,1為公差的等差數列,
∴f(1)+f(2)+…+f(n)=n×
1
2
+
n(n-1)
2
×1=
n2
2
(n∈N*).
故選:C.
點評:本題考查抽象函數及其應用,著重考查賦值法與等差數列的確定及其求和公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

14、有六個命題:
①如果函數y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關于x=a對稱;②如果函數f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關于x=0對稱;③如果函數y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關于x=a對稱;④函數y=f(x)與
f(2a-x)的圖象關于x=a對稱;⑤函數y=f(a-x)與y=f(a+x)的圖象關于x=a對稱;⑥函數y=f(a-x)與y=f(a+x)的圖象關于x=0對稱.則正確的命題是
①③④⑥
(請將你認為正確的命題前的序號全部填入題后橫線上,少填、填錯均不得分).

查看答案和解析>>

科目:高中數學 來源: 題型:

14、已知如果函數f(x)滿足:對任意的實數a,b,都有f(a+b)=f(a)•f(b),且f(1)=2,則f(0)+f(3)=
9

查看答案和解析>>

科目:高中數學 來源: 題型:

如果函數f(x)滿足:對任意實數a,b都有f(a+b)=f(a)f(b),且f(1)=2,則
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+
f(5)
f(4)
+…+
f(2010)
f(2009)
=
4018
4018

查看答案和解析>>

科目:高中數學 來源: 題型:

如果函數f(x)滿足f(-x)=-f(x),f(x)在區間[1,3]上是增函數且最大值為5,那么f(x)在區間[-3,-1]上是(  )

查看答案和解析>>

同步練習冊答案