中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=alnx+2x+3(a∈R)
(1)若函數f(x)在x=2處取得極值,求實數a的值;
(Ⅱ)若a=1,設g(x)=f(x)+kx,且不等式g′(x)≥0在X∈(0,2)上恒成立,求實數k的取值范圍;
(Ⅲ)在(I)的條件下,將函數f(x)的圖象關于y軸對稱得到函數φ(x)的圖象,再將函數φ(x)的圖象向右平移3個單位向下平移4個單位得到函數w(x)的圖象,試確定函數w(x)的單調性并根據單調性證明ln[2.3.4…(n+1))]2≤n(n+1)(n∈N,n>l).
分析:(I)若函數f(x)在x=2處取得極值,則當x=2,f′(x)=0,由此可以構造一個關于a的方程,解方程即可求出滿足條件的實數a的值;
(Ⅱ)若a=1,根據g(x)=f(x)+kx,我們可以求出函數g(x)的解析式,又由不等式g′(x)≥0在X∈(0,2)上恒成立,我們可以將問題轉化為一個函數恒成立問題,進而求出實數k的取值范圍;
(Ⅲ)根據(I)中a值,我們求出函數f(x)的解析式,進而根據將函數f(x)的圖象關于y軸對稱得到函數φ(x)的圖象,再將函數φ(x)的圖象向右平移3個單位向下平移4個單位得到函數w(x)的圖象,求出函數w(x)的解析式,進而利用導數法證明出函數w(x)的單調性后,即可得到ln[2.3.4…(n+1))]2≤n(n+1).
解答:解:(I)∵函數的定義域為(0,+∞),由f(x)=alnx+2x+3(a∈R)
∴f′(x)=
a
x
+2

又∵函數f(x)在x=2處取得極值,
∴f′(2)=
a
2
+2
=0
解得a=-4
(II)g(x)=f(x)+kx=lnx+2x+3+kx=lnx+(k+2)x+3
∴g′(x)=
1
x
+k+2
≥0在X∈(0,2)上恒成立,
即k≥-2-
1
x

又0<x<2,
∴-2-
1
x
<-
5
2

∴k≥-
5
2

即滿足條件的實數k的取值范圍為[-
5
2
,+∞)
(III)∵f(x)=-4lnx+2x+3
∴φ(x)=-4ln(-x)-2x+3
∴w(x)=-4ln(3-x)-2x+5
則w′(x)=
4
x
-2

∵當x∈(0,
1
2
)時,w′(x)>0,當x∈(
1
2
,+∞)時,w′(x)<0,
∴w(x)=-4ln(3-x)-2x+5在區間(0,
1
2
)上單調遞增,在區間(
1
2
,+∞)上單調遞減
∴n∈N,n>l時,-4ln(3-n)-2n+5≤w(2)=1
∴ln(n+1)≤n
即ln2≤1,ln3≤2,…,ln(n+1)≤n
∴ln2+ln3+…+ln(n+1)≤1+2+…+n
∴ln[2.3.4…(n+1)]≤
n(n+1)
2

∴2ln[2.3.4…(n+1)]≤n(n+1)
即ln[2.3.4…(n+1))]2≤n(n+1)(n∈N,n>l).
點評:本題考查的知識點是函數在某點取得極值的條件,函數的圖象與圖象變化,函數的單調性與導數的關系,其中(I)的切入點是f′(2)=0,(2)的線入點是g′(x)≥0在X∈(0,2)上恒成立,(3)的切入點是函數w(x)的單調性并根據單調性.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案