中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
如圖,已知△OFP的面積為m,且=1.
(I)若,求向量的夾角θ的取值范圍;
(II)設,且.若以O為中心,F為焦點的橢圓經過點P,當取得最小值時,求此橢圓的方程.

【答案】分析:(1)根據△OFP的面積為m,設向量的夾角為θ,因為=m,×=1,
cosθ=1,可得tanθ=2m,進而可得答案.
(2)以O為原點,所在直線為x軸建立直角坐標系,設=c,P點坐標為(x,y),所以=m
•|y|=,即.因為=(c,0),=(x-c,y),=1
所以
所以可得==
,判斷知f(c)在[2,+∞)上是增函數.
所以當c=2時,f(c)為最小,從而為最小,此時P().
最終得到答案.
解答:解:(I)∵△OFP的面積為m,設向量的夾角為θ.
=m ①
×=1,∴cosθ=1 ②
由①、②得:tanθ=2m
,∴,∴
即向量的夾角θ的取值范圍為
(II)如圖,以O為原點,所在直線為x軸建立直角坐標系
=c,P點坐標為(x,y)∵=m
•|y|=,∴
=(c,0),=(x-c,y),=1

==
,當c≥2時,任取c2>c1≥2

當c2>c1≥2時,
∴f(c2)-f(c1)>0,∴f(c)在[2,+∞)上是增函數
∴當c=2時,f(c)為最小,從而為最小,此時P(
設橢圓的方程為,則∴a2=10,b2=6
故橢圓的方程為
點評:本題主要考查向量的數量積運算和橢圓的標準方程的求法.屬難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知△OFP的面積為m,且
OF
FP
=1.
(I)若
1
2
<m<
3
2
,求向量
OF
FP
的夾角θ的取值范圍;
(II)設|
OF
|=
4
3
m
,且|
OF
|≥2
.若以O為中心,F為焦點的橢圓經過點P,當
OP
取得最小值時,求此橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:模擬題 題型:解答題

如圖,設△OFP的面積為S,已知=1,
(1)若,求向量的夾角θ的取值范圍;
(2)若S=≥2,當取最小值時,建立適當的直角坐標系,求以O為中心,F為一個焦點且經過點P的橢圓方程。

查看答案和解析>>

科目:高中數學 來源:2010年北京十二中高考數學一模試卷(文科)(解析版) 題型:解答題

如圖,已知△OFP的面積為m,且=1.
(I)若,求向量的夾角θ的取值范圍;
(II)設,且.若以O為中心,F為焦點的橢圓經過點P,當取得最小值時,求此橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:2006年高考第一輪復習數學:5.5 向量的應用(解析版) 題型:解答題

如圖,已知△OFP的面積為m,且=1.
(I)若,求向量的夾角θ的取值范圍;
(II)設,且.若以O為中心,F為焦點的橢圓經過點P,當取得最小值時,求此橢圓的方程.

查看答案和解析>>

同步練習冊答案