中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
若數列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數)對任意n∈N*都成立,則我們把數列{an}稱為“L型數列”.
(1)試問等差數列{an}、等比數列{bn}(公比為r)是否為L型數列?若是,寫出對應p、q的值;若不是,說明理由.
(2)已知L型數列{an}滿足a1=1,a2=3,an+1-4an+4an-1=0(n≥2,n∈N*),證明:數列{an+1-2an}是等比數列,并進一步求出{an}的通項公式an
【答案】分析:(1)等差數列{an}、等比數列{bn}(n∈N*)都是L型數列,然后分別找出符合題意的p和q即可.
(2)將an+1-4an+4an-1=0(n≥2,n∈N*)化成an+1-2an=2an-4an-1=2(an-2an-1),根據等比數列的定義進行判定即可,然后求出新數列的通項,在等式兩側同除以2n,可得是以為首項,公差為的等差數列,求出通項即可求出an
解答:解:(1)答:等差數列{an}、等比數列{bn}(n∈N*)都是L型數列.
理由 當數列{an}(n∈N*)是等差數列時,有an+2-an+1=an+1-an,(1分)
即an+2-2an+1+an=0,且相應的p=-2,q=1.                         (3分)
所以等差數列{an}(n∈N*)是L型數列.  (4分)
同樣,當數列{bn}(n∈N*)是等比數列時,有bn+2=rbn+1(r為公比),(5分)
即bn+2-rbn+1+0•bn=0,且相應的p=-r,q=0.                     (7分)
所以等比數列{bn}(n∈N*)是L型數列.     (8分)
證明 (2)∵an+1-4an+4an-1=0(n≥2,n∈N*),
∴an+1-2an=2an-4an-1
=2(an-2an-1). (10分)
又a2-2a1=3-2=1(≠0),
∴數列{an+1-2an}(n∈N*)是以(a2-2a1)為首項,公比為2的等比數列. (12分)
于是,an-2an-1=(a2-2a1)•2n-2,即an-2an-1=2n-2(n≥2,n∈N*).
.因此,是以為首項,公差為的等差數列.(14分)
,
所以數列{an}的通項公式. (16分)
點評:本題主要考查了等差數列與等比數列的綜合,同時考查了數列的通項公式,構造新數列是常用的方法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列關于數列的命題中,正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•煙臺二模)若數列{an}滿足an+12-
a
2
n
=d
(d為正常數,n∈N+),則稱{an}為“等方差數列”.甲:數列{an}為等方差數列;乙:數列{an}為等差數列,則甲是乙的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•三明模擬)若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于
1
m
,那么正數m的最小取值是( 。

查看答案和解析>>

科目:高中數學 來源:2013年福建省三明市高三質量檢查數學試卷(解析版) 題型:選擇題

若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于,那么正數m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中數學 來源:2012年福建省三明市普通高中畢業班質量檢查數學試卷(理科)(解析版) 題型:選擇題

若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于,那么正數m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習冊答案