(本題滿分14分)已知函數(shù)
其中a>0,且a≠1,
(1)求函數(shù)
的定義域;
(2)當(dāng)0<a<1時(shí),解關(guān)于x的不等式
;
(3)當(dāng)a>1,且x∈[0,1)時(shí),總有
恒成立,求實(shí)數(shù)m的取值范圍.
(1)函數(shù)f(x)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ab/0/1himz2.png" style="vertical-align:middle;" />;(2)
;(3)m≤0。
解析試題分析:(1)由真數(shù)大于零,可得函數(shù)的定義域.
(2)由f(x)≥0得2loga(x+1)≥loga(1-x),因?yàn)?<a<1,則對數(shù)函數(shù)是減函數(shù),
所以
.
(3) a>1且x∈[0,1)時(shí)
恒成立.
然后研究真數(shù)
的取值范圍,再結(jié)合對數(shù)函數(shù)的單調(diào)性可求出
的最小值,讓m小于等于其最小值即可.
(1)
函數(shù)f(x)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ab/0/1himz2.png" style="vertical-align:middle;" />………3分
(2)由f(x)≥0得2loga(x+1)≥loga(1-x)
∵0<a<1 ∴
……………………………………(8分)
(3)由題意知:a>1且x∈[0,1)時(shí)
恒成立.……(9分)
設(shè)
,令t=1-x,t∈(0,1],∴
……(10分)
設(shè)
,
∴u(t)的最小值為1……………………………(12分)
又∵a>1,
的最小值為0…………………(13分)
∴m的取值范圍是m≤0…………………………………(14分)
考點(diǎn):對數(shù)函數(shù)的定義域,解對數(shù)不等式,對數(shù)函數(shù)的性質(zhì),不等式恒成立,對數(shù)函數(shù)的最值.
點(diǎn)評(píng):對數(shù)的真數(shù)大于零,就是求函數(shù)的定義域的依據(jù)之一;
利用對數(shù)函數(shù)的單調(diào)性求解不等式轉(zhuǎn)化為真數(shù)的大小關(guān)系;
不等式恒成立問題,在參數(shù)與變量分離的情況下可轉(zhuǎn)化為函數(shù)的最值問題來解.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
已知
(
,
為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:①函數(shù)![]()
在
內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間
,使函數(shù)
在區(qū)間
上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/47/7/4anz61.png" style="vertical-align:middle;" />,那么稱
,
為閉函數(shù)。請解答以下問題:
(1)判斷函數(shù)
是否為閉函數(shù)?并說明理由;
(2)求證:函數(shù)
(
)為閉函數(shù);
(3)若
是閉函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bb/7/vn4qz.png" style="vertical-align:middle;" />的函數(shù)
同時(shí)滿足:
①對于任意的
,總有
; ②
;
③若
,則有
成立。
求
的值;
求
的最大值;
若對于任意
,總有
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
對于定義域?yàn)镈的函數(shù)
,若同時(shí)滿足下列條件:①
在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[
]
,使
在[
]上的值域?yàn)閇
];那么把
(
)叫閉函數(shù).
(1)求閉函數(shù)
符合條件②的區(qū)間[
];
(2)判斷函數(shù)
是否為閉函數(shù)?并說明理由;
(3)若函數(shù)
是閉函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面上的線段l及點(diǎn)P,在l上任取一點(diǎn)Q,線段PQ長度的最小值稱為點(diǎn)P到線段l的距離,記作
。
(1)已知點(diǎn)
,線段
,求
;
(2)設(shè)A(-1,0),B(1,0),求點(diǎn)集
所表示圖形的面積;
(3)若M(0,1),O(0,0),N(2,0),畫出集合
所表示的圖形。(本題滿分14分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)
,且
,定義在區(qū)間
內(nèi)的函數(shù)
是奇函數(shù).
(1)求
的取值范圍;
(2)討論函數(shù)
的單調(diào)性并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知冪函數(shù)
為偶函數(shù),且在區(qū)間
上是單調(diào)遞減函數(shù),
⑴求函數(shù)
的解析式;
⑵討論函數(shù)
的奇偶性。 (12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(16分)已知函數(shù)
是定義在
上的奇函數(shù),且當(dāng)
時(shí),
.
(1)當(dāng)
時(shí),求函數(shù)
的解析式;
(2)若函數(shù)
為單調(diào)遞減函數(shù);
①直接寫出
的范圍(不必證明);
②若對任意實(shí)數(shù)
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com