已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構成等差數列.![]()
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.
科目:高中數學 來源: 題型:解答題
如圖所示,設拋物線
的焦點為
,且其準線與
軸交于
,以
,
為焦點,離心率
的橢圓
與拋物線
在
軸上方的一個交點為P.![]()
(1)當
時,求橢圓
的方程;
(2)是否存在實數
,使得
的三條邊的邊長是連續的自然數?若存在,求出這樣的實數
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓
:
的左、右焦點分別是
,離心率為
,過
且垂直于
軸的直線被橢圓
截得的線段長為
。
(Ⅰ)求橢圓
的方程;
(Ⅱ)點
是橢圓
上除長軸端點外的任一點,連接
,設
的角平分線
交
的長軸于點
,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點
作斜率為
的直線
,使
與橢圓
有且只有一個公共點,設直線的
斜率分別為
。若
,試證明
為定值,并求出這個定值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的一個頂點為A(0,-1),焦點在x軸上.若右焦點到直線
的距離為3.
(1)求橢圓的方程;
(2)設橢圓與直線
相交于不同的兩點M、N.當
時,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的一個頂點為
,焦點在
軸上,中心在原點.若右焦點到直線
的距離為3.
(1)求橢圓的標準方程;
(2)設直線
與橢圓相交于不同的兩點
.當
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,離心率為
,短軸長為4
.![]()
(I)求橢圓C的標準方程;
(II)直線x=2與橢圓C交于P、Q兩點,A、B是橢圓O上位于直線PQ兩側的動點,且直線AB的斜率為
.
①求四邊形APBQ面積的最大值;
②設直線PA的斜率為
,直線PB的斜率為
,判斷
+
的值是否為常數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,橢圓C以過點A(1,
),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓
的左焦點為
,過點
的直線交橢圓于
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
兩點.![]()
(1)若點
的橫坐標為
,求直線
的斜率;
(2)記△
的面積為
,△
(
為原點)的面積為
.試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系
中,設點
(
),直線
:
,點
在直線
上移動,
是線段
與
軸的交點, 過
、
分別作直線
、
,使
,
.![]()
(1)求動點
的軌跡
的方程;
(2)在直線
上任取一點
做曲線
的兩條切線,設切點為
、
,求證:直線
恒過一定點;
(3)對(2)求證:當直線
的斜率存在時,直線
的斜率的倒數成等差數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com