中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構成等差數列.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.

(1)
(2)

解析試題分析:(1)依題意,設橢圓的方程為.
構成等差數列,
, .
,.
橢圓的方程為   
(2) 將直線的方程代入橢圓的方程中,
 
由直線與橢圓僅有一個公共點知,,

化簡得: 
,
(法一)當時,設直線的傾斜角為,
,
,      
,時,,,.
時,四邊形是矩形, 
所以四邊形面積的最大值為 
(法二)


四邊形的面積,                        
                                                   
當且僅當時,,故
所以四邊形的面積的最大值為 
考點:直線與橢圓的位置關系
點評:主要是考查了橢圓方程,以及直線與橢圓的位置關系的運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖所示,設拋物線的焦點為,且其準線與軸交于,以為焦點,離心率的橢圓與拋物線軸上方的一個交點為P.

(1)當時,求橢圓的方程;
(2)是否存在實數,使得的三條邊的邊長是連續的自然數?若存在,求出這樣的實數;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

橢圓的左、右焦點分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為
(Ⅰ)求橢圓的方程;
(Ⅱ)點是橢圓上除長軸端點外的任一點,連接,設的角平分線的長軸于點,求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點作斜率為的直線,使與橢圓有且只有一個公共點,設直線的斜率分別為。若,試證明為定值,并求出這個定值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的一個頂點為A(0,-1),焦點在x軸上.若右焦點到直線的距離為3.
(1)求橢圓的方程;
(2)設橢圓與直線相交于不同的兩點M、N.當時,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的一個頂點為,焦點在軸上,中心在原點.若右焦點到直線的距離為3.    
(1)求橢圓的標準方程;
(2)設直線與橢圓相交于不同的兩點.當時,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C的中心在原點,焦點在x軸上,離心率為,短軸長為4.

(I)求橢圓C的標準方程;
(II)直線x=2與橢圓C交于P、Q兩點,A、B是橢圓O上位于直線PQ兩側的動點,且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知橢圓的左焦點為,過點的直線交橢圓于兩點,線段的中點為的中垂線與軸和軸分別交于兩點.

(1)若點的橫坐標為,求直線的斜率;
(2)記△的面積為,△為原點)的面積為.試問:是否存在直線,使得?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在平面直角坐標系中,設點),直線:,點在直線上移動,是線段軸的交點, 過分別作直線,使 .

(1)求動點的軌跡的方程;
(2)在直線上任取一點做曲線的兩條切線,設切點為,求證:直線恒過一定點;
(3)對(2)求證:當直線的斜率存在時,直線的斜率的倒數成等差數列.

查看答案和解析>>

同步練習冊答案