中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知橢圓的中心為坐標原點O,焦點在X軸上,橢圓短半軸長為1,動點M(2,t)(t>0)在直線上.

(1)求橢圓的標準方程

(2)求以線段OM為直徑且被直線3x―4y―5=0截得的弦長為2的圓的方程;

(3)設F是橢圓的右焦點,過點F作直線OM的垂線與以線段OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

答案:
解析:

  解:(1)又由點M在準線上,得  2分

  故 從而

  所以橢圓方程為  4分

  (2)以OM為直徑的圓的方程為

  即

  其圓心為,半徑  6分

  因為以OM為直徑的圓被直線截得的弦長為2

  所以圓心到直線的距離  8分

  所以,解得

  所求圓的方程為  10分

  (3)方法一:設過點F作直線OM的垂線,垂足為K,由平幾知:

直線OM:,直線FN:  12分

  由

  所以線段ON的長為定值

  所以線段ON的長為定值  14分


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(3,-1)共線.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設M為橢圓上任意一點,且
OM
OA
OB
(λ,μ∈R)
,證明λ22為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程
(2)求以OM為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心為坐標原點,斜率為1且過橢圓右焦點F(2,0)的直線交橢圓于A,B兩點,
OA
+
OB
a
=(3,-1)
共線,則該橢圓的長半軸長為
6
6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程;
(2)求以OM為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(3,-1)
共線,則該橢圓的離心率為(  )
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

同步練習冊答案