已知函數f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,若x=
時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(1)a=2,b=-4,c=5(2)y=f(x)在[-3,1]上的最大值為13,最小值為![]()
(1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b,
當x=1時,切線l的斜率為3,可得2a+b=0 ①
當x=
時,y=f(x)有極值,則f′(
)=0,
可得4a+3b+4=0 ②
由①②解得a=2,b=-4.
由于切點的橫坐標為x=1,∴f(1)=4.
∴1+a+b+c=4.∴c=5.
(2)由(1)可得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4,
令f′(x)=0,得x=-2,x=
.
當x變化時,y,y′的取值及變化如下表:
| x | -3 | (-3,-2) | -2 | (-2, |
| ( | 1 |
|
|
| + | 0 | - | 0 | + | |
| y | 8 |
| 13 |
|
|
| 4 |
∴ y=f(x)在[-3,1]上的最大值為13,最小值為![]()
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中數學 來源:浙江省東陽中學高三10月階段性考試數學理科試題 題型:022
已知函數f(x)的圖像在[a,b]上連續不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值,若存在最小正整數k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數f(x)為[a,b]上的“k階收縮函數”.已知函數f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數”,則k的值是_________.
查看答案和解析>>
科目:高中數學 來源:上海模擬 題型:解答題
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中數學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數學試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com