已知
、
分別是橢圓
的左、右焦點(diǎn).
(1)若
是第一象限內(nèi)該橢圓上的一點(diǎn),
,求點(diǎn)
的坐標(biāo);
(2)設(shè)過定點(diǎn)
的直線
與橢圓交于不同的兩點(diǎn)
、
,且
為銳角(其
中
為坐標(biāo)原點(diǎn)),求直線
的斜率
的取值范圍.
(1)點(diǎn)
的坐標(biāo)為
;(2)直線
的斜率
的取值范圍是
.
解析試題分析:(1)設(shè)
,由橢圓方程可表示出
、
,又
,即可求點(diǎn)
的坐標(biāo);
(2)顯然
不滿足題意,所直線的斜率存在,可設(shè)
的方程為
,與橢圓方程聯(lián)立后用韋達(dá)定理表示出
、
;又
為銳角,
,進(jìn)而可解出
的取值范圍.
試題解析:(1)因?yàn)闄E圓方程為
,知
,
,
設(shè)
,則
,
又
,聯(lián)立
,解得
,
6分
(2)顯然
不滿足題意,所直線的斜率存在,可設(shè)
的方程為
,
設(shè)
,聯(lián)立![]()
, 8分
且△
10分
又
為銳角,
,
,
,![]()
又
,
,
12分
考點(diǎn):直線與圓錐曲線的綜合問題、設(shè)而不求思想.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
+
=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)(-1,
)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)已知點(diǎn)Q(
,0),動(dòng)直線l過點(diǎn)F,且直線l與橢圓C交于A,B兩點(diǎn),證明:
·
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
.
(1)求橢圓
的方程;
(2)設(shè)不與坐標(biāo)軸平行的直線
與橢圓
交于
兩點(diǎn),坐標(biāo)原點(diǎn)
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
=1(a>b>0)的離心率為
,一條準(zhǔn)線l:x=2.
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),M是l上的點(diǎn),F為橢圓C的右焦點(diǎn),過點(diǎn)F作OM的垂線與以OM為直徑的圓D交于P,Q兩點(diǎn).
①若PQ=
,求圓D的方程;
②若M是l上的動(dòng)點(diǎn),求證點(diǎn)P在定圓上,并求該定圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)y在軸上,焦距為
,且過點(diǎn)M
。
(1)求橢圓C的方程;
(2)若過點(diǎn)
的直線l交橢圓C于A、B兩點(diǎn),且N恰好為AB中點(diǎn),能否在橢圓C上找到點(diǎn)D,使△ABD的面積最大?若能,求出點(diǎn)D的坐標(biāo);若不能,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心為平面直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動(dòng)點(diǎn),M為過P且垂直于x軸的直線上的一點(diǎn),
=λ,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
的離心率是
,
分別是橢圓
的左、右兩個(gè)頂點(diǎn),點(diǎn)
是橢圓
的右焦點(diǎn)。點(diǎn)
是
軸上位于
右側(cè)的一點(diǎn),且滿足
.![]()
(1)求橢圓
的方程以及點(diǎn)
的坐標(biāo);
(2)過點(diǎn)
作
軸的垂線
,再作直線
與橢圓
有且僅有一個(gè)公共點(diǎn)
,直線
交直線
于點(diǎn)
.求證:以線段
為直徑的圓恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).![]()
(1)求拋物線C的方程;
(2)過點(diǎn)F作直線交拋物線C于A,B兩點(diǎn).若直線AO、BO分別交直線l:y=x-2于M、N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:y2=2px(p>0),M點(diǎn)的坐標(biāo)為(12,8),N點(diǎn)在拋物線C上,且滿足
=
,O為坐標(biāo)原點(diǎn).![]()
(1)求拋物線C的方程;
(2)以M點(diǎn)為起點(diǎn)的任意兩條射線l1,l2的斜率乘積為1,并且l1與拋物線C交于A,B兩點(diǎn),l2與拋物線C交于D,E兩點(diǎn),線段AB,DE的中點(diǎn)分別為G,H兩點(diǎn).求證:直線GH過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com