已知函數(shù)y=f(x)是定義在區(qū)間[-
,
]上的偶函數(shù),且x∈[0,
]時(shí),f(x)=-x2-x+5.(1)求函數(shù)f(x)的解析式;
(2)若矩形ABCD的頂點(diǎn)A,B在函數(shù)y=f(x)的圖象上,頂點(diǎn)C,D在x軸上,求矩形ABCD面積的最大值.
(1)f(x)=
(2)當(dāng)t=1時(shí),矩形ABCD的面積取得極大值6,且此極大值也是S(t)在t∈(0,
]上的最大值,從而當(dāng)t=1時(shí),矩形ABCD的面積取得最大值6.
(1)當(dāng)x∈[-
,0]時(shí),-x∈[0,
].
∴f(-x)=-(-x)2-(-x)+5=-x2+x+5.
又∵f(x)是偶函數(shù),
∴f(x)=f(-x)=-x2+x+5.
∴f(x)=![]()
(2)由題意,不妨設(shè)A點(diǎn)在第一象限,坐標(biāo)為(t,-t2-t+5),其中t∈(0,
].
由圖象對(duì)稱性可知B點(diǎn)坐標(biāo)為(-t,-t2-t+5).則S(t)=S矩形ABCD=2t(-t2-t+5)=-2t3-2t2+10t.
=-6t2-4t+10.由
=0,得t1=-
(舍去),t2=1.當(dāng)0<t<1時(shí),
>0;t>1時(shí),
<0.
∴S(t)在(0,1]上單調(diào)遞增,在[1,
]上單調(diào)遞減.∴當(dāng)t=1時(shí),矩形ABCD的面積取得極大值6,且此極大值也是S(t)在t∈(0,
]上的最大值,從而當(dāng)t=1時(shí),矩形ABCD的面積取得最大值6.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 1 |
| 2 |
| 1 |
| 2011 |
| 2 |
| 2011 |
| 3 |
| 2011 |
| 4 |
| 2011 |
| 2010 |
| 2011 |
| A、1005 | B、2010 |
| C、2011 | D、4020 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| lnx |
| x |
| 1 |
| e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| lnx |
| x |
| 1 |
| e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| f(x) |
| ex |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 1-x | 3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com