中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設數列{an}的通項公式為an=an+b(n∈N*,a>0).數列{bn}定義如下:對于正整數m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10
(2)若a=2,b=-1,求數列{bm}的前2m項和公式.
分析:(1)由已知條件得an=2n-3,由數列{bn}定義,令an=2n-3≥10,能求出b10
(2)由已知條件得an=2n-1,根據bm的定義知b1+b2+…+b2m=(b1+b3+..b2m-1)+(b2+b4+..+b2m),由此能求出結果.
解答:解:(1)∵an=an+b(n∈N*,a>0),a=2,b=-3,
∴an=an+b=2n-3,
∵對于正整數m,bm是使得不等式an≥m成立的所有n中的最小值,
∴令an=2n-3≥10,
解得n≥6.5,∴n=7,
即b10=7.
(2)∵an=an+b(n∈N*,a>0),a=2,b=-1,
∴an=an+b=2n-1,
對于正整數,令an≥m,求得 n≥
m+1
2

根據bm的定義可知:
當m=2k-1時,bm=k(k∈N*);
當m=2k時,bm=k+1(k∈N*).
∴b1+b2+…+b2m=(b1+b3+..b2m-1)+(b2+b4+..+b2m
=(1+2+3+..+m)+[2+3+4+..+(m+1)]
=
m(m+1)
2
+
m(m+3)
2
=m2+2m.
點評:本題考查數列的通項公式和前n項和的求法,解題時要認真審題,注意分類討論思想和等價轉化思想的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}的通項是關于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整數的個數.
(1)求an并且證明{an}是等差數列;
(2)設m、k、p∈N*,m+p=2k,求證:
1
Sm
+
1
Sp
2
Sk

(3)對于(2)中的命題,對一般的各項均為正數的等差數列還成立嗎?如果成立,請證明你的結論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}的通項公式為 an=kn-1.已知a1+a2+a3=7,且a1+3,3a2,a3+4構成等差數列.
(1)求k的值;
(2)令bn=log2a3n+1,(n=1,2,…,),求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}的通項公式an=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,那么an+1-an等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}的通項an=n2+λn+1,已知對任意n∈N*,都有an+1>an,則實數λ的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}的通項公式an=f(n)是一個函數,則它的定義域是(  )

查看答案和解析>>

同步練習冊答案