中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖,某自來水公司要在公路兩側排水管,公路為東西方向,在路北側沿直線排,在路南側沿直線排,現要在矩形區域內沿直線將接通.已知,公路兩側排管費用為每米1萬元,穿過公路的部分的排管費用為每米2萬元,設所成的小于的角為

(Ⅰ)求矩形區域內的排管費用關于的函數關系式;
(Ⅱ)求排管的最小費用及相應的角

(Ⅰ);(Ⅱ)最小費用為萬元,相應的角.

解析試題分析:(Ⅰ)把的長度分別用表示,分別求出費用相加即可;(Ⅱ)對(Ⅰ)中函數,用導數為工具,判斷其單調區間,求出最小值.
試題解析:(Ⅰ)如圖,過,垂足為,由題意得
故有.       4分
所以   5分

.      8分
(Ⅱ)設(其中),
.            10分
,即,得.             11分
列表






+
0
-

單調遞增
極大值
單調遞減
所以當時有,此時有.       15分
答:排管的最小費用為萬元,相應的角.            16分
考點:函數的應用、導數的應用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(理)已知函數f(x)= -lnx,x∈[1,3].
(Ⅰ)求f(x)的最大值與最小值;
(Ⅱ)若f(x)<4-At對于任意的x∈[1,3],t∈[0,2]恒成立,求實數A的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數為奇函數,其圖象在點處的切線與直線垂直,導函數 的最小值為
(1)求的值;
(2)求函數的單調遞增區間,并求函數上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,函數
(1)求曲線在點處的切線方程;  (2)當時,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為實數,函數
(Ⅰ)求的單調區間與極值;
(Ⅱ)求證:當時,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函數,求實數a的取值范圍;
(Ⅱ)當a=2時,求證:1-<2ln(x-1)<2x-4(x>2);
(Ⅲ)求證:+…+<lnn<1++ +(n∈N*,且n≥2).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若的極值點,求實數的值;
(2)若上為增函數,求實數的取值范圍;
(3)當時,方程有實根,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數f(x)=ex+ax-1(e為自然對數的底數).
(Ⅰ)當a=1時,求過點(1,f(1))處的切線與坐標軸圍成的三角形的面積;
(II)若f(x)x2在(0,1 )上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求函數在區間[1,3]上的極值。

查看答案和解析>>

同步練習冊答案